329 research outputs found

    Power-Colours: Simple X-ray Binary Variability Comparison

    Get PDF
    We demonstrate a new method of variability classification using observations of black hole X-ray binaries. Using `power colours' -- ratios of integrated power in different Fourier frequency bands -- we can clearly differentiate different canonical black hole states as the objects evolve during outburst. We analyse (~ 2400) Rossi X-ray Timing Explorer observations of 12 transient low mass black hole X-ray binaries and find that the path taken around the power colour-colour diagram as the sources evolve is highly consistent from object to object. We discuss how the consistency observed in the power colour-colour diagram between different objects allows for easy state classification based on only a few observations, and show how the power-spectral shapes can be simply classified using a single parameter, the power-spectral `hue'. To illustrate the benefits of our simple model-independent approach, we show that the persistent high mass X-ray binary Cyg X-1 shows very similar power-spectral evolution to the transient black hole sources, with the main difference being caused by a combination of a lack of quasi-periodic oscillations and an excess of low-frequency power-law noise in the Cyg X-1 power spectra during the transitional state. We also compare the transient objects to the neutron star atoll source Aquila X-1, demonstrating that it traces a different path in the power colour-colour plot. Thus, power-colours could be an effective method to classify newly discovered X-ray binaries.Comment: 13 pages, 9 figures, accepted by MNRA

    Inclination-dependent spectral and timing properties in transient black hole X-ray binaries

    Get PDF
    We use a simple one-dimensional parameterisation of timing properties to show that hard and hard-intermediate state transient black hole X-ray binaries with the same power-spectral shape have systematically harder X-ray power-law emission in higher-inclination systems. We also show that the power-spectral shape and amplitude of the broadband noise (with low-frequency quasi-periodic oscillations, QPOs, removed) is independent of inclination, confirming that it is well-correlated with the intrinsic structure of the emitting regions and that the "type C" QPO, which is inclination-dependent, has a different origin to the noise, probably geometric. Our findings suggest that the power-law emission originates in a corona which is flattened in the plane of the disc, and not in a jet-like structure which would lead to softer spectra at higher inclinations. However, there is tentative evidence that the inclination-dependence of spectral shape breaks down deeper into the hard state. This suggests either a change in the coronal geometry and possible evidence for contribution from jet emission, or alternatively an even more optically thin flow in these states.Comment: 6 Pages, 4 Figures, accepted as a Letter by MNRA

    Identification of black hole power spectral components across all canonical states

    Full text link
    From a uniform analysis of a large (8.5 Ms) Rossi X-ray Timing Explorer data set of Low Mass X-ray Binaries, we present a complete identification of all the variability components in the power spectra of black holes in their canonical states. It is based on gradual frequency shifts of the components observed between states, and uses a previous identification in the black hole low hard state as a starting point. It is supported by correlations between the frequencies in agreement with those previously found to hold for black hole and neutron stars. Similar variability components are observed in neutron stars and black holes (only the component observed at the highest frequencies is different) which therefore cannot depend on source-specific characteristics such as the magnetic field or surface of the neutron star or spin of the black hole. As the same variability components are also observed across the jet-line the X-ray variability cannot originate from the outer-jet but is most likely produced in either the disk or the corona. We use the identification to directly compare the difference in strength of the black hole and neutron star variability and find these can be attributed to differences in frequency and strength of high frequency features, and do not require the absence of any components. Black holes attain their highest frequencies (in the hard-intermediate and very-high states) at a level a factor ~6 below the highest frequencies attained by the corresponding neutron star components, which can be related to the mass difference between the compact objects in these systems.Comment: 17 pages, 16 figures, accepted for publication in Ap

    Antenna Design and Implementation for the Future Space Ultra-Long Wavelength Radio Telescope

    Get PDF
    In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth's ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole-type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 - 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.Comment: Submitted to Experimental Astronomy, 23 pages, 17 figure

    Detection of Ultra High Energy Cosmic Rays and Neutrinos with Lunar Orbital Radio Telescope

    Full text link
    Particle cascades induced by ultra-high-energy (UHE) cosmic rays and neutrinos impacting on the lunar regolith usually radiate Cherenkov radio emissions due to the presence of excess negative charge, which is known as Askaryan effect. Several experiments have been carried out to detect the Cherenkov radio emissions in the lunar regolith. To prepare for future lunar Ultra-Long Wavelength (ULW, frequencies below 30 MHz) radio astronomy missions, we study the detection of the Cherenkov radio emissions with the ULW radio telescope that are operating at the lunar orbit. We have carried out instrument modelling and analytic calculations for the analysis of aperture, flux and event rate, and the analyses show the detectability of the Cherenkov radiation. Based on the properties of the Cherenkov radiation, we have demonstrated that the cosmic ray and neutrino events could be reconstructed with the three ULW vector antennas onboard the lunar satellites via measurements of the Askaryan radio pulse intensity, polarizations, etc. The results obtained by this study would be useful for future lunar radio explorer mission, where the detections of UHE cosmic rays and neutrinos could be successfully attempted.Comment: Accepted for publication in European Physical Journal C, 18 pages, 11 figure

    Hard X-ray Flares Preceding Soft X-ray Outbursts in Aquila X-1: A Link between Neutron Star and Black Hole State Transitions

    Full text link
    We have analyzed {\it Rossi X-ray Timing Explorer} (RXTE) data of the neutron star transient Aquila X-1 obtained during its outbursts in May/June 1999 and September/October 2000. We find that in the early rise of these outbursts, a hard flare in the energy range above 15 keV preceded the soft X-ray peak. The hard X-ray flux of the hard flares at maximum was more than a factor of three stronger than at any other point in the outbursts. The rise of the hard X-ray flare to this maximum, was consistent with a monotonically brightening low/hard state spectrum. After the peak of the hard flare, a sharp spectral transition occurred with spectral pivoting in the range 8--12 keV. Our timing analysis shows that during the hard flare the power spectra were mainly composed of band-limited noise and a ∌\sim 1--20 Hz QPO, which correlate in frequency. Immediately after the hard flare, the power spectra turned into power law noise. The spectral and timing properties during and after the hard flares are very similar to those in black hole transients during the early rise of an outburst. We suggest that these hard flares and spectral transitions in Aql X-1 are of the same origin as those observed in black hole transients. This leads to the association of the 1--20 Hz QPOs and band-limited noise in Aql X-1 with those in black hole transients. We discuss the impact of this discovery on our understanding of soft X-ray transient outbursts, state transitions and variability in X-ray binaries.Comment: 13 pages including 4 figures, accepted for publication in ApJL. For more details, see http://zon.wins.uva.nl/~yuwf/xraytransients.htm

    Type I X-ray bursts, burst oscillations and kHz quasi-periodic oscillations in the neutron star system IGR J17191-2821

    Full text link
    We present a detailed study of the X-ray energy and power spectral properties of the neutron star transient IGR J17191-2821. We discovered four instances of pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs). The frequency difference between these kHz QPOs is between 315 Hz and 362 Hz. We also report on the detection of five thermonuclear type-I X-ray bursts and the discovery of burst oscillations at ~294 Hz during three of them. Finally, we report on a faint and short outburst precursor, which occurred about two months before the main outburst. Our results on the broadband spectral and variability properties allow us to firmly establish the atoll source nature of IGR J17191-2821.Comment: 9 pages, 7 figures - accepted for publication in MNRA

    Space-based Aperture Array For Ultra-Long Wavelength Radio Astronomy

    Full text link
    The past decade has seen the rise of various radio astronomy arrays, particularly for low-frequency observations below 100MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21cm line emission. However, Earth-based radio astronomy below frequencies of 30MHz is severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. Various studies in the past were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. We briefly present the achievable science cases, and discuss the system design for selected scenarios, such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the satellite network. In light of a scalable array and to avert single point of failure, we propose both centralized and distributed solutions for the ULW space-based array. We highlight the benefits of various deployment locations and summarize the technological challenges for future space-based radio arrays.Comment: Submitte
    • 

    corecore