421 research outputs found
Low-Rank Discriminative Least Squares Regression for Image Classification
Latest least squares regression (LSR) methods mainly try to learn slack
regression targets to replace strict zero-one labels. However, the difference
of intra-class targets can also be highlighted when enlarging the distance
between different classes, and roughly persuing relaxed targets may lead to the
problem of overfitting. To solve above problems, we propose a low-rank
discriminative least squares regression model (LRDLSR) for multi-class image
classification. Specifically, LRDLSR class-wisely imposes low-rank constraint
on the intra-class regression targets to encourage its compactness and
similarity. Moreover, LRDLSR introduces an additional regularization term on
the learned targets to avoid the problem of overfitting. These two improvements
are helpful to learn a more discriminative projection for regression and thus
achieving better classification performance. Experimental results over a range
of image databases demonstrate the effectiveness of the proposed LRDLSR method
Censoring the Editor in Transient Forebrain Ischemia
A molecular explanation for why some neurons are more vulnerable than others to ischemic injury has long remained elusive. In this issue of Neuron, Peng et al. propose that CREB-dependent downregulation of the RNA editing enzyme ADAR2, resulting in defective Q/R editing of AMPA receptor GluR2 subunits and increased availability of calcium and zinc-permeable death-promoting AMPA receptors, underlies the vulnerability of some neuronal populations to ischemia
3D Face Tracking and Texture Fusion in the Wild
We present a fully automatic approach to real-time 3D face reconstruction
from monocular in-the-wild videos. With the use of a cascaded-regressor based
face tracking and a 3D Morphable Face Model shape fitting, we obtain a
semi-dense 3D face shape. We further use the texture information from multiple
frames to build a holistic 3D face representation from the video frames. Our
system is able to capture facial expressions and does not require any
person-specific training. We demonstrate the robustness of our approach on the
challenging 300 Videos in the Wild (300-VW) dataset. Our real-time fitting
framework is available as an open source library at http://4dface.org
- …