47 research outputs found

    Pre-training strategy using real particle collision data for event classification in collider physics

    Full text link
    This study aims to improve the performance of event classification in collider physics by introducing a pre-training strategy. Event classification is a typical problem in collider physics, where the goal is to distinguish the signal events of interest from background events as much as possible to search for new phenomena in nature. A pre-training strategy with feasibility to efficiently train the target event classification using a small amount of training data has been proposed. Real particle collision data were used in the pre-training phase as a novelty, where a self-supervised learning technique to handle the unlabeled data was employed. The ability to use real data in the pre-training phase eliminates the need to generate a large amount of training data by simulation and mitigates bias in the choice of physics processes in the training data. Our experiments using CMS open data confirmed that high event classification performance can be achieved by introducing a pre-trained model. This pre-training strategy provides a potential approach to save computational resources for future collider experiments and introduces a foundation model for event classification.Comment: Presented at the Machine Learning and the Physical Sciences Workshop, NeurIPS 202

    Quantum Gate Pattern Recognition and Circuit Optimization for Scientific Applications

    Full text link
    There is no unique way to encode a quantum algorithm into a quantum circuit. With limited qubit counts, connectivities, and coherence times, circuit optimization is essential to make the best use of near-term quantum devices. We introduce two separate ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL. The first ingredient is a technique to recognize repeated patterns of quantum gates, opening up the possibility of future hardware co-optimization. The second ingredient is an approach to reduce circuit complexity by identifying zero- or low-amplitude computational basis states and redundant gates. As a demonstration, AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation in high energy physics. For this algorithm, our optimization scheme brings a significant reduction in the gate count without losing any accuracy compared to the original circuit. Additionally, we have investigated whether this can be demonstrated on a quantum computer using polynomial resources. Our technique is generic and can be useful for a wide variety of quantum algorithms.Comment: 22 pages, 16 figure

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC