60 research outputs found
Recommended from our members
Scientific Needs for Future X-ray Sources in the U.S. -- A White Paper
Many of the important challenges facing humanity, including developing alternative sources of energy and improving heath, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons and spins, x rays have proved especially valuable
Science and Technology of Future Light Sources
Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation
XRM2005 Conference Summary
X-ray microscopy is at a state of rapid development. The presentations at the Conference covered the latest developments in the field
Recommended from our members
X-ray microimaging by diffractive techniques
The report summarizes the development of soft x-ray microscopes at the National Synchrotron Light Source X-1A beamline. We have developed a soft x-ray microscopy beamline (X-1A) at the National Synchrotron Light Source at Brookhaven National Laboratory. This beamline has been upgraded recently to provide two endstations dedicated to microscopy experiments. One endstation hosts a brand new copy of the redesigned room temperature scanning x-ray microscope (STXM), and the other end station hosts a cryo STXM and the original redesigned room temperature microscope, which has been commissioned and has started operation. Cryo STXM and the new microscope use the same new software package, running under the LINUX operating system. The new microscope is showing improved image resolution and extends spectromicroscopy to the nitrogen, oxygen and iron edges. These microscopes are used by us, and by users of the facility, to image hydrated specimens at 50 nm or better spatial resolution and with 0.1-0.5 eV energy resolution. This allows us to carry out chemical state mapping in biological, materials science, and environmental and colloidal science specimens. In the cryo microscope, we are able to do chemical state mapping and tomography of frozen hydrated specimens, and this is of special importance for radiation-sensitive biological specimens. for spectromicroscopic analysis, and methods for obtaining real-space images from the soft x-ray diffraction patterns of non-crystalline specimens. The user program provides opportunities for collaborators and other groups to exploit the techniques available and to develop them further. We have also developed new techniques such as an automated method for acquiring ''stacks'' of images
- …