45 research outputs found
Differential effects of source-specific particulate matter on emergency hospitalizations for ischemic heart disease in Hong Kong
Background: Ischemic heart disease (IHD) is a major public health concern. Although many epidemiologic studies have reported evidence of adverse effects of particulate matter (PM) mass on IHD, significant knowledge gaps remain regarding the potential impacts of different PM sources. Much the same as PM size, PM sources may influence toxicological characteristics. Objectives: We identified contributing sources to PM10 mass and estimated the acute effects of PM10 sources on daily emergency IHD hospitalizations in Hong Kong. Methods: We analyzed the concentration data of 19 PM10 chemical components measured between 2001 and 2007 by positive matrix factorization to apportion PM10 mass, and used generalized additive models to estimate associations of interquartile range (IQR) increases in PM10 exposures with IHD hospitalization for different lag periods (up to 5 days), adjusted for potential confounders. Results: We identified 8 PM10 sources: vehicle exhaust, soil/road dust, regional combustion, residual oil, fresh sea salt, aged sea salt, secondary nitrate, and secondary sulfate. Vehicle exhaust, secondary nitrate, and secondary sulfate contributed more than half of the PM10 mass. Although associations with IQR increases in 2-day moving averages (lag01) were statistically significant for most sources based on single-source models, only PM10 from vehicle exhaust [1.87% (95% CI: 0.66, 3.10); IQR = 4.9 μg/m3], secondary nitrate [2.28% (95% CI: 1.15, 3.42); IQR = 8.6 μg/m3], and aged sea salt [1.19% (95% CI: 0.04, 2.36); IQR = 5.9 μg/m3] were significantly associated with IHD hospitalizations in the multisource model. Analysis using chemical components provided similar findings. Conclusion: Emergency IHD hospitalization was significantly linked with PM10 from vehicle exhaust, nitrate-rich secondary PM, and sea salt-related PM. Findings may help prioritize toxicological research and guide future monitoring and emission-control polices.published_or_final_versio
Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau, China: Implications for pollution transport from South Asia
Bulk aerosol samples were collected from 16 July 2008 to 26 July 2009 at Lulang, a high-altitude (>3300m above sea level) site on the southeast Tibetan Plateau (TP); objectives were to determine chemical characteristics of the aerosol and identify its major sources. We report aerosol (total suspended particulate, TSP) mass levels and the concentrations of selected elements, carbonaceous species, and water-soluble inorganic ions. Significant buildup of aerosol mass and chemical species (organic carbon, element carbon, nitrate, and sulfate) occurred during the premonsoon, while lower concentrations were observed during the monsoon. Seasonal variations in aerosol and chemical species were driven by precipitation scavenging and atmospheric circulation. Two kinds of high-aerosol episodes were observed: one was enriched with dust indicators (Fe and Ca2+), and the other was enhanced with organic and elemental carbon (OC and EC), SO42−, NO3−, and Fe. The TSP loadings during the latter were 3 to 6 times those on normal days. The greatest aerosol optical depths (National Centers for Environmental Protection/National Center for Atmospheric Research reanalysis) occurred upwind, in eastern India and Bangladesh, and trajectory analysis indicates that air pollutants were transported from the southwest. Northwesterly winds brought high levels of natural emissions (Fe, Ca2+) and low levels of pollutants (SO42−, NO3−, K+, and EC); this was consistent with high aerosol optical depths over the western deserts and Gobi. Our work provides evidence that both geological and pollution aerosols from surrounding regions impact the aerosol population of the TP
High loadings and source strengths of organic aerosols in China
Nation-wide studies of organic aerosols were conducted on a molecular level in 15 Chinese cities. The results showed strikingly high levels of organic compounds (e.g., annual concentrations of polycyclic aromatic hydrocarbons, phthalates, sugars and diacids are 110, 370, 400 and 830 ng m−3, respectively), especially in the mid-west region during winter (up to 125 μg m−3 organic carbon). Fossil fuel combustion and/or biomass burning products are 3−30 times more abundant in winter than in summer. In contrast, significant quantity of phthalates (168−2200 ng m−3) was detected in summer. Concentrations of the pollutants are generally 1−3 orders of magnitude higher than those in developed countries. Their source strengths are characterized in winter by fossil fuel combustion, followed by secondary oxidation, plant wax emissions and biomass burning, whereas in summer by secondary oxidation, followed by fossil fuel combustion and plastic emissions
Seasonal variations of monocarbonyl and dicarbonyl in urban and sub-urban sites of Xi'an, China
Seventeen airborne carbonyls including monocarbonyls and dicarbonyls were determined in urban and sub-urban sites of Xi'an, China in three seasons in 2010. In winter, acetone was the most abundant carbonyl in the urban site due to usage of organic solvents in constructions and laboratories and its slower atmospheric removal mechanisms by photolysis and reaction with hydroxyl radical than those of formaldehyde and acetaldehyde. In the sub-urban site, acetaldehyde was the most abundant carbonyl, followed by formaldehyde and acetone. During summer, however, formaldehyde was the most dominant carbonyl in both sites. The photooxidations of a wide range of volatile organic compounds (VOCs) yielded much more formaldehyde than other carbonyls under high solar radiation and temperature. In the urban site, the average concentrations of dicarbonyls (i.e.; glyoxal and methyglyoxal) in spring and summer were higher than that in winter. Transformation of aromatic VOCs emitted from fuel evaporation leads to the formation of 1,2-dicarbonyls. A reverse trend was observed in sub-urban sites, as explained by the relatively low abundances and accumulations of VOC precursors in the rural atmosphere during warm seasons. Moreover, cumulative cancer risk based on measured outdoor carbonyls (formaldehyde and acetaldehyde) in Xi'an Jiaotong University and Heihe was estimated (8.82×10-5 and 4.96×10-5, respectively). This study provides a clear map on the abundances of carbonyls and their source interpretation in the largest and the most economic city in Northwestern China. © 2014 Springer Science+Business Media Dordrecht.link_to_subscribed_fulltex
Azaarenes in fine particulate matter from the atmosphere of a Chinese megacity
Azaarenes (AZAs) are toxicologically relevant organic compounds with physicochemical properties that are significantly different from the well-studied polycyclic aromatic hydrocarbons (PAHs). However, little is known about their concentrations, seasonal variations, fate, and relationship with PAHs in air. This paper reports the temporal variations in the concentrations and composition patterns of AZAs in PM2.5 that was sampled once per 6 days from outdoor air of Xi'an, China from July 2008 to August 2009. The concentrations of the aAZAs, quinoline (QUI), benzo[h]quinoline (BQI), and acridine (ACR) in PM2.5 were 213-6441, 185-520, 69-2483, and 10-3544 pg m(-3), respectively. These concentrations were higher than those measured in urban areas of Western Europe. AZA compositional patterns were dominated by BQI and ACR. The high concentration of AZAs, high AZA/related PAH ratio, and the dominance of three-ring AZAs (BQI and ACR) in PM2.5 of Xi'an are all in contrast to observations from Western European and North American cities. This contrast likely reflects differences in coal type and the more intense use of coal in China. The PM2.5-bound concentration of AZA in winter season (W) was higher than during the summer season (S) with W/S ratios of 5.7, 1.4, 4.1, and 13, for aAZAs, QUI, BQI, and ACR, respectively. Despite their significantly different physicochemical properties, AZAs were significantly (p < 0.05) positively correlated with their related PAHs and pyrogenic elemental carbon. The changes in AZA concentrations were positively correlated with ambient pressure but negatively correlated with ambient temperature, wind speed, and relative humidity. This trend is similar to that observed for the related PAHs. We conclude that Xi'an and possibly other Chinese cities have higher emission of AZAs into their atmosphere because of the more pronounced use of coal. We also conclude that in spite of differences in physicochemical properties between AZAs and related PAHs, the atmospheric dynamics and relationships with meteorological factors of both compound groups are similar
Increasing trend of primary NO 2 exhaust emission fraction in Hong Kong
Despite the successful reduction in roadside NO x levels, no such decrease has been detected in roadside NO 2 concentration in Hong Kong. One underlying cause could be the rising primary NO 2 fraction of the total emission of NO x. Primary NO 2 can be particularly detrimental to Hong Kong because a large fraction of the population are exposed to the traffic-related primary pollutants in the street canyons formed by congested high-rise buildings. In this study, hourly mean concentration data for roadside nitrogen oxides (NO x), nitrogen dioxide (NO 2), and background ozone (O 3) were used to estimate the mean primary NO 2 fraction from vehicle exhausts in Hong Kong. An overall increasing trend was observed for the primary NO 2 fraction (f-NO 2) values in all the three roadside air monitoring sites. The primary NO 2 as a fraction of total NO x (f-NO 2) increased approximately from 2% in 1998 to 13% in 2008 in Hong Kong. The two particular periods of rising f-NO 2 coincided with the two implementation periods of the diesel retrofit programs for the light-duty vehicles and heavy-duty vehicles. Future vehicle emission control strategies should target not only total NO x but also primary NO 2. Health benefit or disease burden estimates should be taken into account and updated in the process of policy planning and evaluation. © 2011 Springer Science+Business Media B.V.link_to_subscribed_fulltex
PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment
Polycyclic aromatic compounds (PACs) in air particulate matter contribute considerably to the health risk of air pollution. The objectives of this study were to assess the occurrence and variation in concentrations and sources of PM2.5-bound PACs [Oxygenated PAHs (OPAHs), nitro-PAHs and parent-PAHs] sampled from the atmosphere of a typical Chinese megacity (Xi'an), to study the influence of meteorological conditions on PACs and to estimate the lifetime excess cancer risk to the residents of Xi'an (from inhalation of PM2.5-bound PACs). To achieve these objectives, we sampled 24-h PM2.5 aerosols (once in every 6 days, from 5 July 2008 to 8 August 2009) from the atmosphere of Xi'an and measured the concentrations of PACs in them. The PM2.5-bound concentrations of Σcarbonyl-OPAHs, ∑ hydroxyl + carboxyl-OPAHs, Σnitro-PAHs and Σalkyl + parent-PAHs ranged between 5–22, 0.2–13, 0.3–7, and 7–387 ng m− 3, respectively, being markedly higher than in most western cities. This represented a range of 0.01–0.4% and 0.002–0.06% of the mass of organic C in PM2.5 and the total mass of PM2.5, respectively. The sums of the concentrations of each compound group had winter-to-summer ratios ranging from 3 to 8 and most individual OPAHs and nitro-PAHs had higher concentrations in winter than in summer, suggesting a dominant influence of emissions from household heating and winter meteorological conditions. Ambient temperature, air pressure, and wind speed explained a large part of the temporal variation in PACs concentrations. The lifetime excess cancer risk from inhalation (attributable to selected PAHs and nitro-PAHs) was six fold higher in winter (averaging 1450 persons per million residents of Xi'an) than in summer. Our results call for the development of emission control measures