108 research outputs found

    Breast density classification with deep convolutional neural networks

    Full text link
    Breast density classification is an essential part of breast cancer screening. Although a lot of prior work considered this problem as a task for learning algorithms, to our knowledge, all of them used small and not clinically realistic data both for training and evaluation of their models. In this work, we explore the limits of this task with a data set coming from over 200,000 breast cancer screening exams. We use this data to train and evaluate a strong convolutional neural network classifier. In a reader study, we find that our model can perform this task comparably to a human expert

    Fundamental limits on concentrating and preserving tensorized quantum resources

    Full text link
    Quantum technology offers great advantages in many applications by exploiting quantum resources like nonclassicality, coherence, and entanglement. In practice, an environmental noise unavoidably affects a quantum system and it is thus an important issue to protect quantum resources from noise. In this work, we investigate the manipulation of quantum resources possessing the so-called tensorization property and identify the fundamental limitations on concentrating and preserving those quantum resources. We show that if a resource measure satisfies the tensorization property as well as the monotonicity, it is impossible to concentrate multiple noisy copies into a single better resource by free operations. Furthermore, we show that quantum resources cannot be better protected from channel noises by employing correlated input states on joint channels if the channel output resource exhibits the tensorization property. We address several practical resource measures where our theorems apply and manifest their physical meanings in quantum resource manipulation.Comment: 12 pages, 3 figure

    An Integrative Remote Sensing Application of Stacked Autoencoder for Atmospheric Correction and Cyanobacteria Estimation Using Hyperspectral Imagery

    Get PDF
    Hyperspectral image sensing can be used to effectively detect the distribution of harmful cyanobacteria. To accomplish this, physical- and/or model-based simulations have been conducted to perform an atmospheric correction (AC) and an estimation of pigments, including phycocyanin (PC) and chlorophyll-a (Chl-a), in cyanobacteria. However, such simulations were undesirable in certain cases, due to the difficulty of representing dynamically changing aerosol and water vapor in the atmosphere and the optical complexity of inland water. Thus, this study was focused on the development of a deep neural network model for AC and cyanobacteria estimation, without considering the physical formulation. The stacked autoencoder (SAE) network was adopted for the feature extraction and dimensionality reduction of hyperspectral imagery. The artificial neural network (ANN) and support vector regression (SVR) were sequentially applied to achieve AC and estimate cyanobacteria concentrations (i.e., SAE-ANN and SAE-SVR). Further, the ANN and SVR models without SAE were compared with SAE-ANN and SAE-SVR models for the performance evaluations. In terms of AC performance, both SAE-ANN and SAE-SVR displayed reasonable accuracy with the Nash???Sutcliffe efficiency (NSE) > 0.7. For PC and Chl-a estimation, the SAE-ANN model showed the best performance, by yielding NSE values > 0.79 and > 0.77, respectively. SAE, with fine tuning operators, improved the accuracy of the original ANN and SVR estimations, in terms of both AC and cyanobacteria estimation. This is primarily attributed to the high-level feature extraction of SAE, which can represent the spatial features of cyanobacteria. Therefore, this study demonstrated that the deep neural network has a strong potential to realize an integrative remote sensing application

    TT-depth-optimized Quantum Search with Quantum Data-access Machine

    Full text link
    Quantum search algorithms offer a remarkable advantage of quadratic reduction in query complexity using quantum superposition principle. However, how an actual architecture may access and handle the database in a quantum superposed state has been largely unexplored so far; the quantum state of data was simply assumed to be prepared and accessed by a black-box operation -- so-called quantum oracle, even though this process, if not appropriately designed, may adversely diminish the quantum query advantage. Here, we introduce an efficient quantum data-access process, dubbed as quantum data-access machine (QDAM), and present a general architecture for quantum search algorithm. We analyze the runtime of our algorithm in view of the fault-tolerant quantum computation (FTQC) consisting of logical qubits within an effective quantum error correction code. Specifically, we introduce a measure involving two computational complexities, i.e. quantum query and TT-depth complexities, which can be critical to assess performance since the logical non-Clifford gates, such as the TT (i.e., π/8\pi/8 rotation) gate, are known to be costliest to implement in FTQC. Our analysis shows that for NN searching data, a QDAM model exhibiting a logarithmic, i.e., O(logN)O(\log{N}), growth of the TT-depth complexity can be constructed. Further analysis reveals that our QDAM-embedded quantum search requires O(N×logN)O(\sqrt{N} \times \log{N}) runtime cost. Our study thus demonstrates that the quantum data search algorithm can truly speed up over classical approaches with the logarithmic TT-depth QDAM as a key component.Comment: 13 pages, 8 figures / Comment welcom

    Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model

    Full text link
    There have been increasing reports of harmful algal blooms (HABs) worldwide. However, the factors that influence cyanobacteria dominance and HAB formation can be site‐specific and idiosyncratic, making prediction challenging. The drivers of cyanobacteria blooms in Lake Paldang, South Korea, the summer climate of which is strongly affected by the East Asian monsoon, may differ from those in well‐studied North American lakes. Using the observational data sampled during the growing season in 2007–2011, a Bayesian hurdle Poisson model was developed to predict cyanobacteria abundance in the lake. The model allowed cyanobacteria absence (zero count) and nonzero cyanobacteria counts to be modeled as functions of different environmental factors. The model predictions demonstrated that the principal factor that determines the success of cyanobacteria was temperature. Combined with high temperature, increased residence time indicated by low outflow rates appeared to increase the probability of cyanobacteria occurrence. A stable water column, represented by low suspended solids, and high temperature were the requirements for high abundance of cyanobacteria. Our model results had management implications; the model can be used to forecast cyanobacteria watch or alert levels probabilistically and develop mitigation strategies of cyanobacteria blooms. Key Points A Bayesian hurdle Poisson model predicted cyanobacteria abundance Temperature, flushing rate, and water column stability were key factors The model forecasted cyanobacteria watch and alert levels probabilisticallyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106958/1/wrcr20820.pd
    corecore