28,669 research outputs found
Effects of the Spin-Orbit Coupling and the Superconductivity in simple-cubic alpha-Polonium
We have investigated the mechanism of stabilizing the simple-cubic (SC)
structure in polonium (alpha- Po), based on the phonon dispersion calculations
using the first-principles all-electron band method. We have demonstrated that
the stable SC structure results from the suppression of the Peierls instability
due to the strong spin-orbit coupling (SOC) in alpha-Po. Further, we have
explored the possible superconductivity in alpha-Po, and predicted that it
becomes a superconductor with Tc ~ 4 K. The transverse soft phonon mode at q ~
2/3 R, which is greatly influenced by the SOC, plays an important role both in
the structural stability and the superconductivity in alpha-Po. We have
discussed effects of the SOC and the volume variation on the phonon dispersions
and superconducting properties of alpha-Po.Comment: 5pages, 5figure
Pressure-induced Phonon Softenings and the Structural and Magnetic Transitions in CrO
To investigate the pressure-induced structural transitions of chromium
dioxide (CrO), phonon dispersions and total energy band structures are
calculated as a function of pressure. The first structural transition has been
confirmed at P 10 GPa from the ground state tetragonal CrO
(t-CrO) of rutile type to orthorhombic CrO (o-CrO) of
CaCl type. The half-metallic property is found to be preserved in
o-CrO. The softening of Raman-active B phonon mode, which is
responsible for this structural transition, is demonstrated. The second
structural transition is found to occur for P 61.1 GPa from ferromagnetic
(FM) o-CrO to nonmagnetic (NM) monoclinic CrO (m-CrO) of
MoO type, which is related to the softening mode at {\bf q} =
R(1/2,0,1/2). The third structural transition has been newly identified at P=
88.8 GPa from m-CrO to cubic CrO of CaF type that is a FM
insulator
Can Sodium Abundances of A-Type Stars Be Reliably Determined from Na I 5890/5896 Lines?
An extensive non-LTE abundance analysis based on Na I 5890/5896 doublet lines
was carried out for a large unbiased sample of ~120 A-type main-sequence stars
(including 23 Hyades stars) covering a wide v_e sin i range of ~10--300 km/s,
with an aim to examine whether the Na abundances in such A dwarfs can be
reliably established from these strong Na I D lines. The resulting abundances
([Na/H]_{58}), which were obtained by applying the T_eff-dependent
microturbulent velocities of \xi ~2--4 km/s with a peak at T_eff ~ 8000 K
(typical for A stars), turned out generally negative with a large diversity
(from ~-1 to ~0), while showing a sign of v_e sin i-dependence (decreasing
toward higher rotation). However, the reality of this apparently subsolar trend
is very questionable, since these [Na/H]_{58} are systematically lower by
~0.3--0.6 dex than more reliable [Na/H]_{61} (derived from weak Na I 6154/6161
lines for sharp-line stars). Considering the large \xi-sensitivity of the
abundances derived from these saturated Na I D lines, we regard that
[Na/H]_{58} must have been erroneously underestimated, suspecting that the
conventional \xi values are improperly too large at least for such strong
high-forming Na I 5890/5896 lines, presumably due to the depth-dependence of
\xi decreasing with height. The nature of atmospheric turbulent velocity field
in mid-to-late A stars would have to be more investigated before we can
determine reliable sodium abundances from these strong resonance D lines.Comment: 14 pages, 8 figures, accepted for publication in Publ. Astron. Soc.
Japan, Vol. 61, No. 5 (2009
Correlation Assisted Phonon Softenings and the Mott-Peierls Transition in VO
To explore the driving mechanisms of the metal-insulator transition (MIT) and
the structural transition in VO2, we have investigated phonon dispersions of
rutile VO2 (R-VO2) in the DFT and the DFT+U (U : Coulomb correlation) band
calculations. We have found that the phonon softening instabilities occur in
both cases, but the softened phonon mode only in the DFT+U describes properly
both the MIT and the structural transition from R-VO2 to monoclinic VO2
(M1-VO2). This feature demonstrates that the Coulomb correlation effect plays
an essential role of assisting the Peierls transition in R-VO2. We have also
found from the phonon dispersion of M1-VO2 that M1 structure becomes unstable
under high pressure. We have predicted a new phase of VO2 at high pressure that
has a monoclinic CaCl2-type structure with metallic nature
- ā¦