61 research outputs found

    Lateral Integration of SnS and GeSe van der Waals Semiconductors: Interface Formation, Electronic Structure, and Nanoscale Optoelectronics

    No full text
    The emergence of atomically thin crystals has allowed extending materials integration to lateral heterostructures where different 2D materials are covalently connected in the plane. The concept of lateral heterostructures can be generalized to thicker layered crystals, provided that a suitably faceted seed crystal presents edges to which a compatible second van der Waals material can be attached layer by layer. Here, we examine the possibility of integrating multilayer crystals of the group IV monochalcogenides SnS and GeSe, which have the same crystal structure, small lattice mismatch, and similar bandgaps. In a two-step growth process, lateral epitaxy of GeSe on the sidewalls of multilayer SnS flakes (obtained by vapor transport of a SnS2 precursor on graphite) yields heterostructures of laterally stitched crystalline GeSe and SnS without any detectable vertical overgrowth of the SnS seeds and with sharp lateral interfaces. Combined cathodoluminescence spectroscopy and ab initio calculations show the effects of small band offsets on carrier transport and radiative recombination near the interface. The results demonstrate the possibility of forming atomically connected lateral interfaces across many van der Waals layers, which is promising for manipulating optoelectronics, photonics, and for managing charge- and thermal transport

    Templated Mesoporous Silica Outer Shell for Controlled Silver Release of a Magnetically Recoverable and Reusable Nanocomposite for Water Disinfection

    No full text
    In this work, we encapsulated Fe3O4@SiO2@Ag (MS-Ag), a bifunctional magnetic silver core–shell structure, with an outer mesoporous silica (mS) shell to form an Fe3O4@SiO2@Ag@mSiO2 (MS-Ag-mS) nanocomposite using a cationic CTAB (cetyltrimethylammonium bromide) micelle templating strategy. The mS shell acts as protection to slow down the oxidation and detachment of the AgNPs and incorporates channels to control the release of antimicrobial Ag+ ions. Results of TEM, STEM, HRSEM, EDS, BET, and FTIR showed the successful formation of the mS shells on MS-Ag aggregates 50–400 nm in size with highly uniform pores ∼4 nm in diameter that were separated by silica walls ∼2 nm thick. Additionally, the mS shell thickness was tuned to demonstrate controlled Ag+ release; an increase in shell thickness resulted in an increased path length required for Ag+ ions to travel out of the shell, reducing MS-Ag-mS’ ability to inhibit E. coli growth as illustrated by the inhibition zone results. Through a shaking test, the MS-Ag-mS nanocomposite was shown to eradicate 99.99+% of a suspension of E. coli at 1 × 106 CFU/mL with a silver release of less than 0.1 ppb, well under the EPA recommendation of 0.1 ppm. This high biocidal efficiency with minimal silver leach is ascribed to the nanocomposite’s mS shell surface characteristics, including having hydroxyl groups and possessing a high degree of structural periodicity at the nanoscale or “smoothness” that encourages association with bacteria and retains high Ag+ concentration on its surface and in its close proximity. Furthermore, the nanocomposite demonstrated consistent antimicrobial performance and silver release levels over multiple repeated uses (after being recovered magnetically because of the oxidation-resistant silica-coated magnetic Fe3O4 core). It also proved effective at killing all microbes from Long Island Sound surface water. The described MS-Ag-mS nanocomposite is highly synergistic, easy to prepare, and readily recoverable and reusable and offers structural tunability affecting the bioavailability of Ag+, making it excellent for water disinfection that will find wide applications

    Enhanced Hybridization and Nanopatterning via Heated Liquid-Phase Infiltration into Self-Assembled Block Copolymer Thin Films

    No full text
    Organic–inorganic hybrids featuring tunable material properties can be readily generated by applying vapor- or liquid-phase infiltration (VPI or LPI) of inorganic materials into organic templates, with resulting properties controlled by type and quantity of infiltrated inorganics. While LPI offers more diverse choices of infiltratable elements, it tends to yield smaller infiltration amount than VPI, but the attempt to address the issue has been rarely reported. Here, we demonstrate a facile temperature-enhanced LPI method to control and drastically increase the quantity and kinetics of Pt infiltration into self-assembled polystyrene-block-poly­(2-vinylpyridine) block copolymer (BCP) thin films. By applying LPI at mildly elevated temperatures (40–80 °C), we showcase controllable optical functionality of hybrid BCP films along with conductive three-dimensional (3D) inorganic nanostructures. Structural analysis reveals enhanced metal loading into the BCP matrix at higher LPI temperatures, suggesting multiple metal ion infiltration per monomer of P2VP. Combining temperature-enhanced LPI with hierarchical multilayer BCP self-assembly, we generate BCP-metal hybrid optical coatings featuring tunable antireflective properties as well as scalable conductive 3D Pt nanomesh structures. Enhanced material infiltration and control by temperature-enhanced LPI not only enables tunability of organic–inorganic hybrid nanostructures and properties but also expands the application of BCPs for generating uniquely functional inorganic nanostructures

    Solution Processed Fabrication of Se–Te Alloy Thin Films for Application in PV Devices

    No full text
    In this work, we report the first-ever fabrication of solution-processed Se–Te alloy thin films for photovoltaic applications using an amine–thiol solvent system. By controlling the relative quantity of Se and Te in ethylenediamine–ethanethiol (EN–ET) solution mixtures, films with different Se/Te ratios were fabricated at temperatures as low as 200 °C with phase-pure material synthesis and uniform homogenous alloying. These composition variations then successfully demonstrated band gap variation from 1.80 eV for pure Se to 1.18 eV for a film with 60% Se and 40% Te that closely matches the theoretical values calculated from Vegard’s law for these materials. Using the evaporation process, the isolation of chalcogen complexes from the EN–ET solution was performed, which was followed by the addition of foreign solvents like dimethyl sulfoxide, dimethyl formamide, and ethanolamine, which enabled the fabrication of better quality films using the spin coating process, minimizing the porosity and increasing the uniformity of the film. A preliminary device fabricated from these films showed diode characteristics with encouraging photovoltaic performance (a power conversion efficiency of 1.11%) that demands further optimization with film fabrication, selection of device architecture, and detailed defect analysis for this material

    Solution Phase Growth and Ion Exchange in Microassemblies of Lead Chalcogenide Nanoparticles

    No full text
    We demonstrate the synthesis of micron-sized assemblies of lead chalcogenide nanoparticles with controlled morphology, crystallinity, and composition through a facile room-temperature solution phase reaction. The amine–thiol solvent system enables this synthesis with a unique oriented attachment growth mechanism of nanoparticles occurring on the time scale of the reaction itself, forming single-crystalline microcubes of PbS, PbSe, and PbTe materials. Increasing the rate of reaction by changing reaction parameters further allows disturbing the oriented attachment mechanism, which results in polycrystalline microassemblies with uniform spherical morphologies. Along with polycrystallinity, due to the differences in reactivities of each chalcogen in the solution, a different extent of hollow-core nature is observed in these microparticles. Similar to morphologies, the composition of such microparticles can be altered through very simplistic room-temperature solution phase coprecipitation, as well as ion-exchange reactions. While coprecipitation reactions are successful in synthesizing core–shell microstructures of PbSe–PbTe materials, the use of solution phase ion-exchange reaction allows for the exchange of not only Te with Se but also Ag with Pb inside the core of the PbTe microparticles. Despite exchanging one Pb with two Ag cations, the hollow-core nature of particles aids in the retention of the original uniform microparticle morphology

    Surface-Energy Induced Formation of Single Crystalline Bismuth Nanowires over Vanadium Thin Film at Room Temperature

    No full text
    We report high-yield room-temperature growth of vertical single-crystalline bismuth nanowire array by vacuum thermal evaporation of bismuth over a choice of arbitrary substrate coated with a thin interlayer of nanoporous vanadium. The nanowire growth is the result of spontaneous and continuous expulsion of nanometer-sized bismuth domains from the vanadium pores, driven by their excessive surface energy that suppresses the melting point of bismuth close to room temperature. The simplicity of the technique opens a new avenue for the growth of nanowire arrays of a variety of materials

    Cobalt Oxide-Coated Single Crystalline Bismuth Vanadate Photoanodes for Efficient Photoelectrochemical Chlorine Generation

    No full text
    Bismuth vanadate (BiVO4) is an outstanding photoanode material for photoelectrochemical water splitting. In this work, a series of single crystalline BiVO4 photoanodes are synthesized by pulsed laser deposition (PLD). Once coated with a thin layer of cobalt oxide (CoOx) cocatalyst, also by PLD, the photoanodes support efficient photoelectrochemical generation of chlorine (Cl2) from brine under simulated solar light. The activity of the chlorine generation reaction (ClER) is optimized when the thickness of CoOx is about 3 nm, with the faradic efficiency of ClER exceeding 60%. Detailed studies show that the CoOx cocatalyst layer is amorphous, uniform in thickness, and chemically robust. As such, the cocatalyst also effectively protects the underlying BiVO4 photoanodes against chlorine corrosion. This work provides insights into using artificial photosynthesis for byproducts that carry significant economic value while avoiding the energetically expensive oxygen evolution reactions

    Surface-Energy Induced Formation of Single Crystalline Bismuth Nanowires over Vanadium Thin Film at Room Temperature

    No full text
    We report high-yield room-temperature growth of vertical single-crystalline bismuth nanowire array by vacuum thermal evaporation of bismuth over a choice of arbitrary substrate coated with a thin interlayer of nanoporous vanadium. The nanowire growth is the result of spontaneous and continuous expulsion of nanometer-sized bismuth domains from the vanadium pores, driven by their excessive surface energy that suppresses the melting point of bismuth close to room temperature. The simplicity of the technique opens a new avenue for the growth of nanowire arrays of a variety of materials

    Chemomechanically Stable Ultrahigh-Ni Single-Crystalline Cathodes with Improved Oxygen Retention and Delayed Phase Degradations

    No full text
    The pressing demand in electrical vehicle (EV) markets for high-energy-density lithium-ion batteries (LIBs) requires further increasing the Ni content in high-Ni and low-Co cathodes. However, the commercialization of high-Ni cathodes is hindered by their intrinsic chemomechanical instabilities and fast capacity fade. The emerging single-crystalline strategy offers a promising solution, yet the operation and degradation mechanism of single-crystalline cathodes remain elusive, especially in the extremely challenging ultrahigh-Ni (Ni > 90%) regime whereby the phase transformation, oxygen loss, and mechanical instability are exacerbated with increased Ni content. Herein, we decipher the atomic-scale stabilization mechanism controlling the enhanced cycling performance of an ultrahigh-Ni single-crystalline cathode. We find that the charge/discharge inhomogeneity, the intergranular cracking, and oxygen-loss-related phase degradations that are prominent in ultrahigh-Ni polycrystalline cathodes are considerably suppressed in their single-crystalline counterparts, leading to improved chemomechanical and cycling stabilities of the single-crystalline cathodes. Our work offers important guidance for designing next-generation single-crystalline cathodes for high-capacity, long-life LIBs

    Probing Oxidation-Driven Amorphized Surfaces in a Ta(110) Film for Superconducting Qubit

    No full text
    Recent advances in superconducting qubit technology have led to significant progress in quantum computing, but the challenge of achieving a long coherence time remains. Despite the excellent lifetime performance that tantalum (Ta) based qubits have demonstrated to date, the majority of superconducting qubit systems, including Ta-based qubits, are generally believed to have uncontrolled surface oxidation as the primary source of the two-level system loss in two-dimensional transmon qubits. Therefore, atomic-scale insight into the surface oxidation process is needed to make progress toward a practical quantum processor. In this study, the surface oxidation mechanism of native Ta films and its potential impact on the lifetime of superconducting qubits were investigated using advanced scanning transmission electron microscopy (STEM) techniques combined with density functional theory calculations. The results suggest an atomistic model of the oxidized Ta(110) surface, showing that oxygen atoms tend to penetrate the Ta surface and accumulate between the two outermost Ta atomic planes; oxygen accumulation at the level exceeding a 1:1 O/Ta ratio drives disordering and, eventually, the formation of an amorphous Ta2O5 phase. In addition, we discuss how the formation of a noninsulating ordered TaO1−δ (δ < 0.1) suboxide layer could further contribute to the losses of superconducting qubits. Subsurface oxidation leads to charge redistribution and electric polarization, potentially causing quasiparticle loss and decreased current-carrying capacity, thus affecting superconducting qubit coherence. The findings enhance the comprehension of the realistic factors that might influence the performance of superconducting qubits, thus providing valuable guidance for the development of future quantum computing hardware
    corecore