82 research outputs found
Recommended from our members
Generation of heuristics by problem transformation
We define problem transformations and show that each problem transformation induces an admissible and monotonic heuristic on the original problem. Furthermore we show that every admissible and monotonic heuristic is induced by some problem transformation. This result generalizes and unifies several approaches for heuristic formation reported on in the literature. We give four techniques for generating problem transformations and we apply these techniques to generate several heuristics found in the literature. We also introduce a variant of the relational representation framework which has some advantages
Recommended from our members
Generation of heuristics by transforming the problem representation
This paper formally defines the idea of transforming one problem representation into another. The power of changing the problem representation is demonstrated in the context of heuristic generation. We prove that each problem transformation induces an admissible and monotonic heuristic on the original problem. Furthermore we show that every admissible and monotonic heuristic is induced by some problem transformation. This result generalizes and unifies several approaches for heuristic formation reported on in the literature. We give four techniques for generating problem transformations and we apply these techniques to generate several heuristics found in the literature. We also show that changing the problem representation can prove (automatically) that some problems are unsolvable
Recommended from our members
The utility of knowledge in inductive learning
In this paper, we demonstrate how different forms of background knowledge can be integrated with an inductive method for generating constant-free Horn clause rules. Furthermore, we evaluate, both theoretically and empirically, the effect that these types of knowledge have on the cost of learning a rule and on the accuracy of a learned rule. Moreover, we demonstrate that a hybrid explanation-based and inductive learning method can advantageously use an approximate domain theory, even when this theory is incorrect and incomplete
Recommended from our members
EASe : integrating search with learned episodes
Weak methods are insufficient to solve complex problems. Constrained weak methods, like hill-climbing, search too little of the problem space. Unconstrained weak methods, like breadth-first search, are intractable. Fortunately, through the integration of multiple weak methods more powerful problem solvers can be created. We demonstrate that augmenting a weak constrained search method with episodes provides a tractable method for solving a large class of problems. We demonstrate that these episodes can be generated using an unconstrained weak method while solving simple problems from a domain. We provide an analytical model of our approach and empirical results from the logic synthesis domain of VLSI design as well as the classic tile-sliding domain
Recommended from our members
A Boolean complete neural model of adaptive behavior
A multi-layered neural assembly is developed which has the capability of learning arbitrary Boolean functions. Though the model neuron is more powerful than those previously considered, assemblies of neurons are needed to detect non-linearly separable patterns. Algorithms for learning at the neuron and assembly level are described. The model permits multiple output systens to share a common memory. Learned evaluation allows sequences of actions to be organized. Computer simulations demonstrate the capabilities of the model
Complete contingency planners
A framework is proposed for the investigation of planning systems that must deal with bounded uncertainty. A definition of this new class of contingency planners is given. A general, complete contingency planning algorithm is described. The algorithm is suitable to many incomplete information games as well as planning situations where the initial state is only partially known. A rich domain is identified for the application and evaluation of contingency planners. Preliminary results from applying our complete contingency planner to a portion of this domain are encouraging and match expert level performance
Recommended from our members
Instance-based prediction of real-valued attributes
Instance-based representations have been applied to numerous classification tasks with a fair amount of success. These tasks predict a symbolic class based on observed attributes. This paper presents a method for predicting a numeric value based on observed attributes. We prove that if the numeric values are generated by continuous functions with bounded slope, then the predicted values are accurate approximations of the actual values. We demonstrate the utility of this approach by comparing it with standard approaches for value-prediction. The approach requires no background knowledge
Recommended from our members
Detecting and removing noisy instances from concept descriptions
Several published results show that instance-based learning algorithms record high classification accuracies and low storage requirements when applied to supervised learning tasks. However, these learning algorithms are highly sensitive to training set noise. This paper describes a simple extension of instance-based learning algorithms for detecting and removing noisy instances from concept descriptions. The extension requires evidence that saved instances be significantly good classifiers before it allows them to be used for subsequent classification tasks. We show that this extension's performance degrades more slowly in the presence of noise, improves classification accuracies, and further reduces storage requirements in several artificial and real-world databases
Recommended from our members
Comparing instance-averaging with instance-saving learning algorithms
The goal of our research is to understand the power and appropriateness of instance-based representations and their associated acquisition methods. This paper concerns two methods for reducing storage requirements for instance-based learning algorithms. The first method, termed instance-saving, represents concept descriptions by selecting and storing a representative subset of the given training instances. We provide an analysis for instance-saving techniques and specify one general class of concepts that instance-saving algorithms are capable of learning. The second method, termed instance-averaging, represents concept descriptions by averaging together some training instances while simply saving others. We describe why analyses for instance-averaging algorithms are difficult to produce. Our empirical results indicate that storage requirements for these two methods are roughly equivalent. We outline the assumptions of instance-averaging algorithms and describe how their violation might degrade performance. To mitigate the effects of non-convex concepts, a dynamic thresholding technique is introduced and applied in both the averaging and non-averaging learning algorithms. Thresholding increases the storage requirements but also increases the quality of the resulting concept descriptions
Recommended from our members
Episodic learning
A system is described which learns to compose sequences of operators into episodes for problem solving. The system incrementally learns when and why operators are applied. Episodes are segmented so that they are generalizable and reusable. The idea of augmenting the instance language with higher level concepts is introduced. The technique of perturbation is described for discovering the essential features for a rule with minimal teacher guidance. The approach is applied to the domain of solving simultaneous linear equations
- …