9 research outputs found
Chapter 3 An introduction to OpenFOAM
Chapter 3 is an introduction to OpenFOAM, as the most popular CFD tool in effluent discharge modelling. A decade ago, OpenFOAM was only an academic tool for studying complex fluid mechanics problems. However, it has grown quickly in recent years and has found its way into industry as well (e.g., many consulting firms have invested in creating their own solvers for the particular problems they often solve). This book covers the fundamentals of OpenFOAM related to effluent discharge modeling: the choice of available solvers and differences between them, mesh generation options and methodology in OpenFOAM and postprocessing the numerical results
Numerical Modeling of Thermal/Saline Discharges in Coastal Waters
Liquid waste discharged from industrial outfalls is categorized into two major classes based on their density. One type is the effluent that has a higher density than that of the ambient water body. In this case, the discharged effluent has a tendency to sink as a negatively buoyant jet. The second type is the effluent that has a lower density than that of the ambient water body and is hence defined as a (positively) buoyant jet that causes the effluent to rise. Negatively/Positively buoyant jets are found in various civil and environmental engineering projects: discharges of desalination plants, discharges of cooling water from nuclear power plants turbines, mixing chambers, etc. This thesis investigated the mixing and dispersion characteristics of such jets numerically. In this thesis, mixing behavior of these jets is studied using a finite volume model (OpenFOAM). Various turbulence models have been applied in the numerical model to assess the accuracy of turbulence models in predicting the effluent discharges in submerged outfalls. Four Linear Eddy Viscosity Models (LEVMs) are used in the positively buoyant wall jet model for discharging of heated waste including: standard k-ε, RNG k-ε, realizable k-ε and SST k-ω turbulence models. It was found that RNG k-ε, and realizable k-ε turbulence models performed better among the four models chosen. Then, in the next step, numerical simulations of 30˚ and 45˚ inclined dense turbulent jets in stationary ambient water have been conducted. These two angles are examined in this study due to lower terminal rise height for 30˚ and 45˚, which is very important for discharges of effluent in shallow waters compared to higher angles. Five Reynolds-Averaged Navier-Stokes (RANS) turbulence models are applied to evaluate the accuracy of CFD predictions. These models include two LEVMs: RNG k-ε, and realizable k-ε; one Nonlinear Eddy Viscosity Model (NLEVM): Nonlinear k-ε; and two Reynolds Stress Models (RSMs): LRR and Launder-Gibson. It has been observed that the LRR turbulence model as well as the realizable k-ε model predict the flow more accurately among the various turbulence models studied herein
CFD Study of Dense Effluent Discharges in Deep and Shallow Waters
Liquid wastes discharged from industrial outfalls have been researched for many years in the past. Majority of past studies, initiated in 1960s, were experimental studies mainly focused on basics of discharges such as key geometrical properties. Eventually, more robust experimental studies were performed to measure the mixing properties of effluent discharges with various jet configurations and ambient water conditions. Discharges could be as a means of submerged diffusers or surface channels and receiving water could vary from a homogenous calm ambient to a very complex stratified turbulent cross flow ambient. Depending on the bathymetric and economic situation around an outfall project, submerged discharges are preferred designs for most of ocean outfalls. It is the reason that majority of past studies have evaluated the mixing characteristics of submerged jets. Since early 1990s, the numerical modelling has emerged to support complex fluid mechanic problems. Later in 1990s and early in 2000s, the use of computational fluid dynamic (CFD) tools emerged in predicting the jet properties for the effluent discharges. Since then different numerical models have been developed for different applications. Similar to experimental studies, most of numerical studies have been focused on the submerged dense jet discharges. The current study intends to stay focused on the numerical modelling of such jets too; however, to cover the gaps in the literature. To achieve this, a thorough literature review was performed on the past CFD studies of over past 20 years to better understand what was done and what the gaps are. The results of this thorough review revealed that although there has been a great progress in the CFD studies in the field of effluent discharges, there are some applications that have not been investigated before, yet. It was found that there are some discharge inclinations that were not studied numerically before. Four discharge angles of 60°,75°, 80° and 85° were selected in this study, as previous studies mostly focused on 30° and 45°. The higher inclinations are more suitable for deep water outfalls where terminal rise height of the jet does not attach to the ambient water surface. The numerical model OpenFOAM was used in this study which is based on the Finite Volume Method (FVM) applying LRR turbulence model closure. LRR turbulence models was proved to be a capable choice for effluent discharge modelling. The second gap identified in the comprehensive literature review completed was the submerged dense effluent discharge into shallow water with surface attachment (for both inclined and vertical discharges). There was no previous numerical study of such jets identified. Three different regimes were identified: full submergence, plume contact and centerline impingement regimes (i.e. FSR, PCR and CIR). Key geometrical and dilution properties of these jets at surface contact (Xs, Ss) and return point (Xr, Sr) were extracted numerically and compared to those available from experiments. Two discharge angles (30° and 45°) were investigated based on the available experimental data. Five Reynolds-averaged Navier-Stokes (RANS) turbulence models were examined in this study: realizable k-ε and k-ω SST models (known as two-equation turbulence models), v2f (four equations to model anisotropic behavior) and LRR and SSG turbulence models (known as Reynolds stress models - six equations to model anisotropic behavior). Vertical dense effluent discharges are popular in the design of outfall systems. Vertical jets provide the opportunity to be efficient for a range of ambient currents, where the jet will be pushed away not to fall on itself. This research work investigates worst case scenario in terms of mixing and dilution of such jets: vertical dense effluent discharges with no ambient current and in shallow water where jet impacts the surface. This scenario provides a conservative design criteria for such outfall systems. The numerical modelling of such jets has not been studied before and this research work provides novel, though preliminary, insights in simulations of vertical dense effluent discharges in shallow waters. Turbulent vertical discharges with Froude numbers ranging from 9 to 24 were simulated using a Reynolds stress model (RSM), based on the results from inclined dense discharges to characterize the geometrical (i.e., maximum discharge rise Zm and lateral spread Rsp) and dilution μmin properties of such jets. Three flow regimes were reproduced numerically, based on the experimental data: deep, intermediate and impinging flow regimes
CFD Modeling of Effluent Discharges: A Review of Past Numerical Studies
Effluent discharge mixing and dispersion have been studied for many decades. Studies began with experimental investigations of geometrical and concentration characteristics of the jets in the near-field zone. More robust experiments were performed using Laser-Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) systems starting in the 20th century, which led to more accurate measurement and analysis of jet behavior. The advancement of computing systems over the past two decades has led to the development of various numerical methods, which have been implemented in Computational Fluid Dynamics (CFD) codes to predict fluid motion and characteristics. Numerical modeling of mixing and dispersion is increasingly preferred over laboratory experiments of effluent discharges in both academia and industry. More computational resources and efficient numerical schemes have helped increase the popularity of using CFD models in jet and plume modeling. Numerous models have been developed over time, each with different capabilities to facilitate the investigation of all aspects of effluent discharges. Among these, Reynolds-averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES) are at present the most popular CFD models employing effluent discharge modeling. This paper reviews state-of-the-art numerical modeling studies for different types and configurations of discharges, including positively and negatively buoyant discharges, which have mostly been completed over the past two decades. The numerical results of these studies are summarized and critically discussed in this review. Various aspects related to the impact of turbulence models, such as k-ε and Launder-Reece-Rodi (LRR) models, are reviewed herein. RANS and LES models are reviewed, and implications for the simulation of jet and plume mixing are discussed to develop a reference for future researchers performing numerical investigations on jet mixing and dispersion
Numerical Simulation of Effluent Discharges
Discharge Modeling; Numerical Analysis; Desalination; Outfall; Inclined Jets; OpenFOAM; Effluent Dilution Modelin
Numerical Simulation of Effluent Discharges
Discharge Modeling; Numerical Analysis; Desalination; Outfall; Inclined Jets; OpenFOAM; Effluent Dilution Modelin
CFD modeling and analysis of the behavior of 30° and 45° inclined dense jets - new numerical insights
A three-dimensional numerical model of inclined turbulent jets with negatively buoyant discharge into stationary ambient water is presented in this paper to study certain jet parameters with turbulence schemes that have not been employed before in this context such as standard Boussinesq gradient diffusion hypothesis and general gradient diffusion hypothesis to account for the buoyancy-induced turbulence generation. Two jet discharge angles have been chosen for this study: 30° and 45° with the horizontal. These two angles are chosen in this study due to lower terminal rise heights for 30° and 45°, a fact which is critically important for discharges of effluent into shallow waters compared to higher angles than these values. The spatio-temporal jet evolutions for these cases have been modeled using OpenFOAM open-source CFD code, which is based on Finite-Volume Method. Results presented in this paper deal with the geometrical and flow properties of the inclined dense jets. The densimetric Froude number of the effluent at the nozzle ranges between 10 and 34. Two Reynolds-Averaged Navier–Stokes turbulence models are applied to evaluate the accuracy of the numerical predictions: the realizable k–ε (a two-equation model) and the Launder Reece Rodi (a Reynolds Stress Model – RSM).This publication was made possible by NPRP grant #4-935-2-354 from the Qatar National Research Fund (a member of Qatar Foundation).Scopu