25 research outputs found

    Thermal bistability through coupled photonic resonances

    Full text link
    We present a scheme for achieving thermal bistability based on the selective coupling of three optical resonances. This approach requires one of the resonant frequencies to be temperature dependent, which can occur in materials exhibiting strong thermo-optic effects. For illustration, we explore thermal bistability in two different passive systems, involving either a periodic array of Si ring resonators or parallel GaAs thin films separated by vacuum and exchanging heat in the near field. Such a scheme could prove useful for thermal memory devices operating with transition times ≲\lesssim hundreds of milliseconds

    Near-field thermal upconversion and energy transfer through a Kerr medium : Theory

    Full text link
    We present an approach for achieving large Kerr χ(3)\chi^{(3)}--mediated thermal energy transfer at the nanoscale that exploits a general coupled-mode description of triply resonant, four-wave mixing processes. We analyze the efficiency of thermal upconversion and energy transfer from mid- to near-infrared wavelengths in planar geometries involving two slabs supporting far-apart surface plasmon polaritons and separated by a nonlinear χ(3)\chi^{(3)} medium that is irradiated by externally incident light. We study multiple geometric and material configurations and different classes of interveening mediums---either bulk or nanostructured lattices of nanoparticles embedded in nonlinear materials---designed to resonantly enhance the interaction of the incident light with thermal slab resonances. We find that even when the entire system is in thermodynamic equilibrium (at room temperature) and under typical drive intensities ∼W/μm2\sim\mathrm{W}/\mu\mathrm{m}^2, the resulting upconversion rates can approach and even exceed thermal flux rates achieved in typical symmetric and non-equilibrium configurations of vacuum-separated slabs. The proposed nonlinear scheme could potentially be exploited to achieve thermal cooling and refrigeration at the nanoscale, and to actively control heat transfer between materials with dramatically different resonant responses

    Thermal radiation from optically driven Kerr (χ(3)\chi^{(3)}) photonic cavities

    Full text link
    We study thermal radiation from nonlinear (χ(3)\chi^{(3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators [Phys. Rev. Lett. 97, 110602 (2006)] to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including "super-narrow spectral peaks" occurring at the onset of kinetic phase transitions. We show that when the cavities are designed so as to have perfect linear absorptivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading to a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation

    Near-field refrigeration and tunable heat exchange through four-wave mixing

    Full text link
    We modify and extend a recently proposed four-wave mixing scheme [Opt. Express 25 (19),23164 (2017)] for achieving near-field thermal upconversion and energy transfer, to demonstrate efficient thermal refrigeration at low intensities ∼10−9\sim 10^{-9}W/m2^2 over a wide range of gap sizes (from tens to hundreds of nanometers) and operational temperatures (from tens to hundreds of Kelvins). We further exploit the scheme to achieve magnitude and directional tunability of near-field heat exchange between bodies held at different temperatures

    Single-Photon Pulse Induced Transient Entanglement Force

    Full text link
    We show that a single photon pulse (SPP) incident on two interacting two-level atoms induces a transient entanglement force between them. After absorption of a multi-mode Fock state pulse, the time-dependent atomic interaction mediated by the vacuum fluctuations changes from the van der Waals interaction to the resonant dipole-dipole interaction (RDDI). We explicitly show that the RDDI force induced by the SPP fundamentally arises from the two-body transient entanglement between the atoms. This SPP induced entanglement force can be continuously tuned from being repulsive to attractive by varying the polarization of the pulse. We further demonstrate that the entanglement force can be enhanced by more than three orders of magnitude if the atomic interactions are mediated by graphene plasmons. These results demonstrate the potential of shaped SPPs as a powerful tool to manipulate this entanglement force and also provides a new approach to witness transient atom-atom entanglement.Comment: 5 pages, 5 figures and a supplementary materia

    Radiative heat transfer in nonlinear Kerr media

    Get PDF
    We obtain a fluctuation--dissipation theorem describing thermal electromagnetic fluctuation effects in nonlinear media that we exploit in conjunction with a stochastic Langevin framework to study thermal radiation from Kerr (χ(3)\chi^{(3)}) photonic cavities coupled to external environments at and out of equilibrium. We show that that in addition to thermal broadening due to two-photon absorption,the emissivity of such cavities can exhibit asymmetric,non-Lorentzian lineshapes due to self-phase modulation. When the local temperature of the cavity is larger than that of the external bath, we find that the heat transfer into the bath exceeds the radiation from a corresponding linear black body at the same local temperature. We predict that these temperature-tunable thermal processes can be observed in practical, nanophotonic cavities operating at relatively small temperatures

    Giant frequency-selective near-field energy transfer in active--passive structures

    Get PDF
    We apply a fluctuation electrodynamics framework in combination with semianalytical (dipolar) approximations to study amplified spontaneous energy transfer (ASET) between active and passive bodies. We consider near-field energy transfer between semi-infinite planar media and spherical structures (dimers and lattices) subject to gain, and show that the combination of loss compensation and near-field enhancement (achieved by the proximity, enhanced interactions, and tuning of subwavelength resonances) in these structures can result in orders of magnitude ASET enhancements below the lasing threshold. We examine various possible geometric configurations, including realistic materials, and describe optimal conditions for enhancing ASET, showing that the latter depends sensitively on both geometry and gain, enabling efficient and tunable gain-assisted energy extraction from structured surfaces
    corecore