39 research outputs found

    Instant dynamic response measurements for crack monitoring in metallic beams

    Get PDF
    This paper investigates the interdependencies of the modal behaviour of a cantilever beam, its dynamic response and crack growth. A methodology is proposed that can predict crack growth in a metallic beam using only its dynamic response. Analytical and numerical relationships are formulated between the fundamental mode and crack growth using the existing literature and finite element analysis (FEA) software, respectively. A relationship between the dynamic response and the modal behaviour is formulated empirically. All three relationships are used to predict crack growth and propagation. The load conditions are considered the same in all of the experiments for both model development and model validation. The predicted crack growth is compared with the visual observations. The overall error is within acceptable limits in all comparisons. The results obtained demonstrate the possibility of diagnosing crack growth in metallic beams at any instant within the operational conditions and environment

    Response of Gaussian-modulated guided wave in aluminum: An analytical, numerical, and experimental study

    Get PDF
    The application of guided-wave ultrasonic testing in structural health monitoring has been widely accepted. Comprehensive experimental works have been performed in the past but their validation with possible analytical and numerical solutions still requires serious efforts. In this paper, behavior and detection of the Gaussian-modulated sinusoidal guided-wave pulse traveling in an aluminum plate are presented. An analytical solution is derived for sensing guided wave at a given distance from the actuator. This solution can predict the primary wave modes separately. Numerical analysis is also carried out in COMSOL® Multiphysics software. An experimental setup comprising piezoelectric transducers is used for the validation. Comparison of experimental results with those obtained from analytical and numerical solutions shows close agreement

    A methodology for flexibility analysis of pipeline systems

    Get PDF
    Pipeline systems serve a crucial role in an effective transport of fluids to the designated location for medium to long span of distances. Owing to its paramount economic significance, pipeline design field have undergone extensive development over the past few years for enhancing the optimization and transport efficiency. This research paper attempts to propose a methodology for flexibility analysis of pipeline systems through employing contemporary computational tools and practices. A methodical procedure is developed, which involves modeling of the selected pipeline system in CAESAR II followed by the insertion of pipe supports and restraints. The specific location and selection of the inserted supports is based on the results derived from the displacement, stress, reaction, and nozzle analysis of the concerned pipeline system. Emphasis is laid on the compliance of the design features to the leading code of pipeline transportation systems for liquid and slurries, ASME B31.4. The discussed procedure and approach can be successfully adjusted for the analysis of various other types of pipeline system configuration. In addition to the provision of systematic flow in analysis, the method also improves efficient time-saving practices in the pipeline stress analysis

    Identification of an effective nondestructive technique for bond defect determination in laminate composites—A technical review

    Get PDF
    Laminate composites are commonly used for the production of critical mechanical structures and components such as wind turbine blades, helicopter rotors, unmanned aerial vehicle wings and honeycomb structures for aircraft wings. During the manufacturing process of these composite structures, zones or areas with weak bond strength are always issues, which may affect the strength and performance of components. The identification and quantification of these zones are always challenging and necessary for the mass production. Non-destructive testing methods available, including ultrasonic A, B, and C-Scan, laser shearography, X-ray tomography, and thermography can be useful for the mentioned purposes. A comparison of these techniques concerning their capacity of identification and quantification of bond defects; however, still needs a comprehensive review. In this paper, a detailed comparison of several non-destructive testing techniques is provided. Emphasis is placed to institute a guideline to select the most suitable technique for the identification of zones with bond defects in laminated composites. Experimental tests on different composite based machined components are also discussed in detail. The discussion provides practical evidence about the effectiveness of different non-destructive testing techniques.N/

    Catalytic Pyrolysis of Municipal Solid Waste: Effects of Pyrolysis Parameters

    Get PDF
    Burning municipal solid waste (MSW) increases CO2, CH4, and SO2 emissions, leading to an increase in global warming, encouraging governments and researchers to search for alternatives. The pyrolysis process converts MSW to oil, gas, and char. This study investigated catalytic and noncatalytic pyrolysis of MSW to produce oil using MgO-based catalysts. The reaction temperature, catalyst loading, and catalyst support were evaluated. Magnesium oxide was supported on active carbon (AC) and Al2O3 to assess the role of support in MgO catalyst activity. The liquid yields varied from 30 to 54 wt% based on the experimental conditions. For the noncatalytic pyrolysis experiment, the highest liquid yield was 54 wt% at 500 °C. The results revealed that adding MgO, MgO/Al2O3, and MgO/AC declines the liquid yield and increases the gas yield. The catalysts exhibited significant deoxygenation activity, which enhances the quality of the pyrolysis oil and increases the heating value of the bio-oil. Of the catalysts that had high deoxygenation activity, MgO/AC had the highest relative yield. The loading of MgO/AC varied from 5 to 30 wt% of feed to the pyrolysis reactor. As the catalyst load increases, the liquid yield declines, while the gas and char yields increase. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Frequency and amplitude measurement of a cantilever beam using image processing: with a feedback system

    Get PDF
    Image processing techniques can be utilized in analyzing amplitude and frequency of vibrating structures. It is a form of non-contact method which is suitable for cases where application of contact devices could alter the frequency of structure. This paper covers the study based on vision system that performs amplitude and frequency measurement of a cantilever beam in near real time, using image processing and computer vision toolbox in MATLAB. The vision system then detects changes in amplitude followed by feedback mechanism to ensure operation at resonance frequency. The system includes a high speed camera which is able to detect amplitude and frequency of cantilever beam vibrating at a frequency with the help of mechanical exciter. The high speed camera captures images of the beam, that are processed by a MATLAB script for evaluation of amplitude and frequency. To locate amplitude of the vibrating beam, centroid recognition technique is used which tracks the centroids of the beam in consecutive frames and plots number of pixels moved by the centroid with respect to time. Later, frequency is found out on the basis of intensity change over the time. Amplitude analysis is done at different frequencies which are automatically adjusted with the help of microcontroller to determine the resonance point. Exciter continues to vibrate at the resonant frequency until a change in amplitude is detected, implying the formation of crack. At which point the system adjusts its vibrating frequency accordingly to adjust with the new resonant frequency. This paper covers proper experimental procedure backed with the results

    Predicting the effect of voids on mechanical properties of woven composites.

    Get PDF
    An accurate yet easy to use methodology for determining the effective mechanical properties of woven fabric reinforced composites is presented. The approach involves generating a representative unit cell geometry based on randomly selected 2D orthogonal slices from a 3D X-ray micro-tomographic scan. Thereafter, the finite element mesh is generated from this geometry. Analytical and statistical micromechanics equations are then used to calculate effective input material properties for the yarn and resin regions within the FE mesh. These analytical expressions account for the effect of resin volume fraction within the yarn (due to infiltration during curing) as well as the presence of voids within the composite. The unit cell model is then used to evaluate the effective properties of the composite.DelPHE 780 Project funded by UK Department of International Development (DFID), through British Council managed DelPHE scheme

    Optimization of Cobalt Nanoparticles for Biogas Enhancement from Green Algae Using Response Surface Methodology

    Get PDF
    Organic matter may be converted to energy through various methods, but the most preferable one is the Anaerobic Digestion (AD), specifically for biogas production. In sustainable bioenergy production, it can undoubtedly be called one of the most widely used methods from the various feedstock. Over the past years, algae waste has become an increasingly acute environmental problem but luckily it can be used as feedstock to produce bioenergy. In order to improve the energy productivity of green algae, this study is focused on the introduction of cobalt (Co) nanoparticles (NPs) in the AD process. The concentration of Co NPs was optimized using response surface methodology (RSM). Mesophilic temperature range (25–45 °C), initial pH (5–9) and Co NPs dosage (0.5–2 mg/L) were selected as the independent variables for RSM. The results indicated that at optimized values (Co NPs concentration = 1 mg/L, initial pH = 7, and digestion temperature = 35 °C) produced the highest biogas yield of 298 ml. An experiment was carried out at optimized conditions to explore the effect on biogas production. The results showed that Co NPs had a positive influence on biogas yield. The low concentrations achieved higher biogas production as compared to higher ones. A maximum biogas yield of 678 mL is achieved by Co NPs (1 mg/L). AD performance was further evaluated by the modified Gompertz model. Different kinetic parameters were calculated. The values of the performance indicators confirmed that the mathematical model fitted well with experimental data

    Prediction of crack depth and fatigue life of an acrylonitrile butadiene styrene cantilever beam using dynamic response

    Get PDF
    n this article, a methodology is proposed that can be used to predict the crack growth and fatigue life of a cantilever beam made of Acrylonitrile Butadiene Styrene (ABS) manufactured with fused deposition modeling. Three beam configurations based on length (L = 110, 130, and 150 mm) are considered. Empirical relationships are formulated between the natural frequency and the crack growth. The analytical and experimental results are found to be in good agreement for all configurations. Using the experimental data, a global relation is formulated for the crack depth prediction. This global relation is useful for an in situ crack depth prediction with an error of less than 10 %. Later, a residual fatigue life of these specimens is compared with a metallic structure (Aluminum 1050) of similar configuration available in the literature. It is found that the ABS material has more residual fatigue life compared with the metallic structure at the same frequency drop. Based on the remaining fatigue life, ABS material can be a potential material to manufacture machine components under cyclic loads

    Micromechanical modeling of 8-harness satin weave glass fiber-reinforced composites.

    Get PDF
    This study introduces a unit cell (UC) based finite element (FE) micromechanical model that accounts for correct post cure fabric geometry, in-situ material properties and void content within the composite to accurately predict the effective elastic orthotropic properties of 8-harness satin weave glass fiber reinforced phenolic (GFRP) composites. The micromechanical model utilizes a correct post cure internal architecture of weave, which was obtained through X-ray microtomography (XMT) tests. Moreover, it utilizes an analytical expression to up-date the input material properties to account for in-situ effects of resin distribution within yarn (the yarn volume fraction) and void content on yarn and matrix properties. This is generally not considered in modeling approaches available in literature and in particular, it has not been demonstrated before for FE micromechanics models of 8-harness satin weave composites. The UC method is used to obtain the effective responses by applying periodic boundary conditions. The outcome of the analysis based on the proposed model is validated through experiments. After validation, the micromechanical model was further utilized to predict the unknown effective properties of the same composite.DFID UK through DELPHE 78
    corecore