189 research outputs found

    Causes, Effects, and Remedies in Conflict Management

    Full text link
    While workplace conflicts have been widely studied in the literature, this researchprovides a holistic view of the causes and effects of such, and how managers or amanagement can resolve the conflicts among their teams and organization througha detailed, multidimensional framework carried out on one of the biggest textilefirms of Pakistan. With an initial sample of 145 respondents, 37 questionnaireswere dropped because of invalid and incomplete answers; therefore, the studywas carried out on 108 respondents. Conflicts are a part of human nature, butmanagement should play an important role in dealing with these issues, as therecan be enormous chances of conflicts due to a diverse workforce. Conflict alsoresults in poor work performance and low productivity; therefore, it’s suggestedto create teams or groups which may encourage a competitive culture in theorganization. Additionally, a few remedies are identified, which may resolve someissues; managers must look at those techniques for a better culture.&nbsp

    Perception of medical interns and residents about specialty of microbiology and the role of microbiologists during COVID-19 pandemic

    Get PDF
    Background: The speciality of microbiology is closely associated with keeping people healthy and disease free by accurate diagnosis of infectious diseases. In spite of this, awareness about the speciality seems to be scarce. In the present scenario, public perception about microbiology has been changed a lot. The SARS-CoV-2 pandemic has highlighted the crucial role of microbiologists in the health care system. The aim of this survey was to determine the perceptions of medical interns and residents regarding the specialty of microbiology and the role of microbiologists in maintaining and promoting health of people.Methods: On-line survey using google form to identify perception of medical interns and residents about the speciality of microbiology.Results: A total 298 valid responses were obtained response rate 26.02% from the participants among them 167 (56.0%) were male and 131 (44.0%) females. Though, the attitude of medical interns and residents were found positive for the speciality of microbiology, they even recognize the importance of medical microbiology in their future role as medical practitioners, but only few (3.48%) wished to opt it as their career.Conclusions: The risks and responsibilities of a microbiologist involved in managing patients seldom get due acknowledgement. Adequate measures need to be taken to enlighten the authorities about microbiology and various responsibilities of microbiologists. The health care providers and medical teachers needed to appreciate the perception of young medical students regarding current and future trends in specialty choice and take concrete steps to meet the unmet need of health care

    Micromechanical modeling of architected piezoelectric foam with simplified boundary conditions for hydrophone applications

    Get PDF
    Architected piezoelectric materials with controlled porosity are of interest for applications such as hydrophones, miniature accelerometers, vibratory sensors, and contact microphones. Current analytical modeling approach cannot be readily applied to design architected periodic piezoelectric foams with tunable properties while exhibiting elastic anisotropy and piezoelectric activity. This study presents micromechanical-finite element (FE) models to characterize the electromechanical properties of architected piezoelectric foams. The microstructure with zero-dimension (3-0 foam, spherical porosity) and one-dimensional (3-1 foam, cylindrical porosity) connectivity were considered to analyze the effect of porosity connectivity on the performance of piezoelectric foam. 3D FE models of the 3-0 and 3-1 foams were developed and using the intrinsic symmetry of porous structures simplified mixed boundary conditions (MBCs) equivalent to periodic boundary conditions (PBC) were proposed. The proposed approach is simple and eliminates the need of tedious mesh generation process on opposite boundary faces on the micromechanical model of porous microstructures with PBCs. The results obtained from the proposed micromechanics-FE models were compared with those obtained by means of the analytical models based on micromechanics theories, and FE models with PBCs reported in the literature for both 3-0 and 3-1 type foams. An excellent agreement was observed. The computed effective elastic, piezoelectric and dielectric properties and corresponding figure of merit (FOM) revealed that piezoelectric foams with 3-0 connectivity exhibit enhanced hydrostatic FOM as compared to piezoelectric foams with 3-1 connectivity. It is concluded that spherical porosity is more suitable to hydrophone applications

    Low-velocity impact characterization of fiber-reinforced composites with hygrothermal effect

    Get PDF
    In this article, low-velocity impact characteristics of UHN125C carbon fiber/epoxy composite, including unidirectional (0°), cross-directional (0°/90°), and quasi-isotropic layups, were experimentally measured. The effect of the fiber orientation angle and stacking sequences on impact force and induced strain were measured via an instrumented drop-weight apparatus with special concern for the moisture absorption effect. Dried specimens were immersed in distilled water for a certain period of time to absorb water for intermediate and saturated moisture content. It was observed that the impulse was reduced with the increase in moisture content; on the other hand, strain increased with moisture, as measured by DBU-120A strain-indicating software (MADSER Corp., El Paso, TX). Impact damage is widely recognized as one of the most detrimental damage forms in composite laminates because it dissipates the incident energy by a combination of matrix damage, fiber fracture, and fiber-matrix debonding. Therefore, it is extremely important to know the impact strength of a structure, especially for applications in industries such as aerospace, ship design, and some other commercial applications. The use of composite materials in engineering applications is increasing rapidly because they have higher strength-to-weight ratios than metals. The strength, stiffness, and, eventually, the life of composite materials are affected more than conventional materials by the presence of moisture and temperature. Thus, it is necessary to analyze the response of composites in a hydrothermal environment

    Predicting the effect of voids on mechanical properties of woven composites.

    Get PDF
    An accurate yet easy to use methodology for determining the effective mechanical properties of woven fabric reinforced composites is presented. The approach involves generating a representative unit cell geometry based on randomly selected 2D orthogonal slices from a 3D X-ray micro-tomographic scan. Thereafter, the finite element mesh is generated from this geometry. Analytical and statistical micromechanics equations are then used to calculate effective input material properties for the yarn and resin regions within the FE mesh. These analytical expressions account for the effect of resin volume fraction within the yarn (due to infiltration during curing) as well as the presence of voids within the composite. The unit cell model is then used to evaluate the effective properties of the composite.DelPHE 780 Project funded by UK Department of International Development (DFID), through British Council managed DelPHE scheme

    Dielectric properties of (CuO,CaO₂, and BaO)y/CuTl-1223 composites

    No full text
    We synthesized (CuO, CaO₂, and BaO)y/Cu₀,₅Tl₀,₅Ba₂Ca₂Cu₃O₁₀–δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties such as real and imag-inary part of dielectric constant, dielectric loss, and ac-conductivity of these composites are studied by capacitance and conductance measurement as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). The x-ray diffraction analysis reveals that the characteristic behavior of Cu₀,₅Tl₀,₅Ba₂Ca₂Cu₃O₁₀–δ supercon-ductor phase and its structure is nearly undisturbed by doping of nanoparticles. The scanning electron microsco-py images show the improvement in the intergranular links among the superconducting grains with increasing nanoparticles concentration. Microcracks are healed up with the inclusion of these nanoparticles and superconduct-ing volume fraction is also increased. The dielectric properties of these composites strongly depend upon the fre-quency and temperature. The zero resistivity critical temperature and dielectric properties show opposite trend with the addition of nanoparticles in Cu₀,₅Tl₀,₅Ba₂Ca₂Cu₃O₁₀–δ superconductor matrix

    The FRESHAIR4Life study: Global implementation research on non-communicable disease prevention targeting adolescents’ exposure to tobacco and air pollution in disadvantaged populations

    Get PDF
    The FRESHAIR4Life study aims to reduce the non-communicable disease (NCD) burden by implementing preventive interventions targeting adolescents’ exposure to tobacco use and air pollution (AP) worldwide. This paper presents the FRESHAIR4Life methodology and initial rapid review results. The rapid review, using various databases and PubMed, aimed to guide decision-making on risk factor focus, target areas, and populations. It showed variable NCD mortality rates related to tobacco use and AP across the participating countries, with tobacco as the main risk factor in the Kyrgyz Republic, Greece, and Romania, and AP prevailing in Pakistan and Uganda. Adolescent exposure levels, sources, and correlates varied. The study will continue with an in-depth situational analysis to guide the selection, adaptation, and integration of evidence-based interventions into the FRESHAIR4Life prevention package. This package will be implemented, evaluated, assessed for cost-effectiveness, and iteratively refined. The research places a strong emphasis on co-creation, capacity building, and comprehensive communication and dissemination.<br/
    corecore