7 research outputs found

    Properties of asymmetric nuclear matter in different approaches

    Full text link
    Properties of asymmetric nuclear matter are derived from various many-body approaches. This includes phenomenological ones like the Skyrme Hartree-Fock and relativistic mean field approaches, which are adjusted to fit properties of nuclei, as well as more microscopic attempts like the Brueckner-Hartree-Fock approximation, a self-consistent Greens function method and the so-called VlowkV_{lowk} approach, which are based on realistic nucleon-nucleon interactions which reproduce the nucleon-nucleon phase shifts. These microscopic approaches are supplemented by a density-dependent contact interaction to achieve the empirical saturation property of symmetric nuclear matter. The predictions of all these approaches are discussed for nuclear matter at high densities in ╬▓\beta-equilibrium. Special attention is paid to behavior of the isovector component of the effective mass in neutron-rich matter.Comment: 16 pages, 7 figure

    Spectral function at high missing energies and momenta

    Full text link
    The nuclear spectral function at high missing energies and momenta has been determined from a self-consistent calculation of the Green's function in nuclear matter using realistic nucleon-nucleon interactions. The results are compared with recent experimental data derived from (e,eÔÇ▓pe,e'p) reactions on 12C^{12}C. A rather good agreement is obtained if the Green's functions are calculated in a non-perturbative way.Comment: 10 pages, 3 figure