677 research outputs found
Stitching IC Images
Image stitching software is used in many areas such as photogrammetry, biomedical imaging, and even amateur digital photography. However, these algorithms require relatively large image overlap, and for this reason they cannot be used to stitch the integrated circuit (IC) images, whose overlap is typically less than 60 pixels for a 4096 by 4096 pixel image.
In this paper, we begin by using algorithmic graph theory to study optimal patterns for adding IC images one at a time to a grid. In the remaining sections we study ways of stitching all the images simultaneously using different optimisation approaches: least squares methods, simulated annealing, and nonlinear programming
Advertising
This chapter examines commercial advertising, with primary emphasis on consumer-oriented advertisements for goods and services in eighteenth- and nineteenth-century America. It focuses on printed advertising media that targeted readers as purchasers and end-users of goods, but it also includes sellers who simultaneously advertised their goods and services both to readers/consumers directly and to retailers who sold to end-users
Surface enhanced resonance Raman and luminescence on plasmon active nanostructured cavities
Presented here are studies of the impact of excitation angle on surface
enhanced Raman and luminescence spectroscopy of dye immobilised on a plasmon
active nanocavity array support. Results show that both Raman and luminescence
intensities depend on the angle of incidence consistent with the presence of
cavity supported plasmon modes. Dependence of scattering or emission intensity
with excitation angle occurs over the window of observation
Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films
Water soluble positively charged 2-(dimethylamino) ethanethiol (DAET)-protected core-shell CdSe/ZnS quantum dots (QDs) were synthesized and incorporated within negatively charged Nafion polymer films. The water soluble QDs were characterized using UV-visible and fluorescence spectroscopies. Nafion/QDs composite films were deposited on glassy carbon electrodes and characterized using cyclic voltammetry. The electrochemiluminescence (ECL) using hydrogen peroxide as co-reactant was enhanced for Nafion/QDs composite films compared to films of the bare QDs. Significantly, no ECL was observed for Nafion/QDs composite films when peroxydisulfate was used as the co-reactant, suggesting that the permselective properties of the Nafion effectively exclude the co-reactant. The ECL quenching by glutathione depends linearly on its concentration when hydrogen peroxide is used as the co-reactant, opening up the possibility to use Nafion/QDs composite films for various electroanalytical applications
High Sensitivity DNA Detection Using Gold Nanoparticle Functionalised Polyaniline Nanofibres
Polyaniline (PANI) nanofibres (PANI-NF) have been modified with chemically grown gold nanoparticles to give a nanocomposite material (PANI-NFâAuNP) and deposited on gold electrodes. Single stranded capture DNA was then bound to the gold nanoparticles and the underlying gold electrode and allowed to hybridise with a complementary target strand that is uniquely associated with the pathogen, Staphylococcus aureus (S. aureus), that causes mastitis. Significantly, cyclic voltammetry demonstrates that deposition of the gold nanoparticles increases the area available for DNA immobilisation by a factor of approximately 4. EPR reveals that the addition of the Au nanoparticles efficiently decreases the interactions between adjacent PANI chains and/or motional broadening. Finally, a second horseradish peroxidase (HRP) labelled DNA strand hybridises with the target allowing the concentration of the target DNA to be detected by monitoring the reduction of a hydroquinone mediator in solution. The sensors have a wide dynamic range, excellent ability to discriminate DNA mismatches and a high sensitivity. Semi-log plots of the pathogen DNA concentration vs. faradaic current were linear from 150 Ă 10â12 to 1 Ă 10â6 mol Lâ1 and pM concentrations could be detected without the need for molecular, e.g., PCR or NASBA, amplification
Deactivation of the ruthenium excited state by enhanced homogeneous charge transport: Implications for electrochemiluminescent thin film sensors
peer-reviewedThe electrochemiluminescent (ECL) performance of three ruthenium-based metallopolymer platforms with different homogeneous charge transfer diffusion coefficients (DCT) is reported. Significantly, simultaneous detection of light and current in tandem with steady-state photoluminescence studies demonstrate that increasing the rate of Ru3 + production via enhanced charge transport results in a decrease in ECL intensity of up to 82% when the concentration of the co-reactant, sodium oxalate, is low, i.e., sub-mM. Spectroelectrochemical studies demonstrate that for maximum sensitivity to be obtained, the electroactive properties of the polymeric support matrix need to be considered in tandem with luminophore, analyte and co-reactant concentrations
Ground and excited state communication within a ruthenium containing benzimidazole metallopolymer
Emission spectroscopy and electrochemistry has been used to probe the electronic communication between adjacent metal centres and the conjugated backbone within a family of imidazole based metallopolymer, [Ru(bpy)2(PPyBBIM)n]2+, in the ground and excited states, bpy is 2,2â-bipyridyl, PPyBBIM is poly[2-(2-pyridyl)-bibenzimidazole] and n = 3, 10 or 20. Electronic communication in the excited state is not efficient and upon optical excitation dual emission is observed, i.e., both the polymer backbone and the metal centres emit. Coupling the ruthenium moiety to the imidazole backbone results in a red shift of approximately 50 nm in the emission spectrum. Luminescent lifetimes of up to 120 ns were also recorded. Cyclic voltammetry was also utilized to illustrate the distance dependence of the electron hopping rates between adjacent metal centres with ground state communication reduced by up to an order of magnitude compared to previously reported results when the metal to backbone ratio was not altered. DCT and De values of up to 3.96 x 10-10 and 5.32 x 10-10 cm2S-1 were observed with corresponding conductivity values of up to 2.34 x 10-8 Scm-1
Electrochemiluminescence platform for the detection of C-reactive proteins : application of recombinant antibody technology to cardiac biomarker detection
This work exploits the high-affinity of recombinant antibodies and low background electrochemiluminescence (ECL) for cardiac-biomarker detection. The developed assay is capable of fg mL-1 detection limits as well as the detection of C-Reactive Protein (CRP) over a clinically relevant range. The assay demonstrated robust reproducibility, selectivity and stability while also highlighting a novel platform for detection of cardiac biomarkers at low concentrations
- âŠ