41 research outputs found

    Modeling and visualizing networked multi-core embedded software energy consumption

    Full text link
    In this report we present a network-level multi-core energy model and a software development process workflow that allows software developers to estimate the energy consumption of multi-core embedded programs. This work focuses on a high performance, cache-less and timing predictable embedded processor architecture, XS1. Prior modelling work is improved to increase accuracy, then extended to be parametric with respect to voltage and frequency scaling (VFS) and then integrated into a larger scale model of a network of interconnected cores. The modelling is supported by enhancements to an open source instruction set simulator to provide the first network timing aware simulations of the target architecture. Simulation based modelling techniques are combined with methods of results presentation to demonstrate how such work can be integrated into a software developer's workflow, enabling the developer to make informed, energy aware coding decisions. A set of single-, multi-threaded and multi-core benchmarks are used to exercise and evaluate the models and provide use case examples for how results can be presented and interpreted. The models all yield accuracy within an average +/-5 % error margin

    A software controlled voltage tuning system using multi-purpose ring oscillators

    Full text link
    This paper presents a novel software driven voltage tuning method that utilises multi-purpose Ring Oscillators (ROs) to provide process variation and environment sensitive energy reductions. The proposed technique enables voltage tuning based on the observed frequency of the ROs, taken as a representation of the device speed and used to estimate a safe minimum operating voltage at a given core frequency. A conservative linear relationship between RO frequency and silicon speed is used to approximate the critical path of the processor. Using a multi-purpose RO not specifically implemented for critical path characterisation is a unique approach to voltage tuning. The parameters governing the relationship between RO and silicon speed are obtained through the testing of a sample of processors from different wafer regions. These parameters can then be used on all devices of that model. The tuning method and software control framework is demonstrated on a sample of XMOS XS1-U8A-64 embedded microprocessors, yielding a dynamic power saving of up to 25% with no performance reduction and no negative impact on the real-time constraints of the embedded software running on the processor

    Overview of Swallow --- A Scalable 480-core System for Investigating the Performance and Energy Efficiency of Many-core Applications and Operating Systems

    Full text link
    We present Swallow, a scalable many-core architecture, with a current configuration of 480 x 32-bit processors. Swallow is an open-source architecture, designed from the ground up to deliver scalable increases in usable computational power to allow experimentation with many-core applications and the operating systems that support them. Scalability is enabled by the creation of a tile-able system with a low-latency interconnect, featuring an attractive communication-to-computation ratio and the use of a distributed memory configuration. We analyse the energy and computational and communication performances of Swallow. The system provides 240GIPS with each core consuming 71--193mW, dependent on workload. Power consumption per instruction is lower than almost all systems of comparable scale. We also show how the use of a distributed operating system (nOS) allows the easy creation of scalable software to exploit Swallow's potential. Finally, we show two use case studies: modelling neurons and the overlay of shared memory on a distributed memory system.Comment: An open source release of the Swallow system design and code will follow and references to these will be added at a later dat

    IoT Droplocks: Wireless Fingerprint Theft Using Hacked Smart Locks

    Full text link
    Electronic locks can provide security- and convenience-enhancing features, with fingerprint readers an increasingly common feature in these products. When equipped with a wireless radio, they become a smart lock and join the billions of IoT devices proliferating our world. However, such capabilities can also be used to transform smart locks into fingerprint harvesters that compromise an individual's security without their knowledge. We have named this the droplock attack. This paper demonstrates how the harvesting technique works, shows that off-the-shelf smart locks can be invisibly modified to perform such attacks, discusses the implications for smart device design and usage, and calls for better manufacturer and public treatment of this issue.Comment: Submitted and accepted into 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress. Submitted version: 10 pages, 8 figure

    A Benes Based NoC Switching Architecture for Mixed Criticality Embedded Systems

    Get PDF
    Multi-core, Mixed Criticality Embedded (MCE) real-time systems require high timing precision and predictability to guarantee there will be no interference between tasks. These guarantees are necessary in application areas such as avionics and automotive, where task interference or missed deadlines could be catastrophic, and safety requirements are strict. In modern multi-core systems, the interconnect becomes a potential point of uncertainty, introducing major challenges in proving behaviour is always within specified constraints, limiting the means of growing system performance to add more tasks, or provide more computational resources to existing tasks. We present MCENoC, a Network-on-Chip (NoC) switching architecture that provides innovations to overcome this with predictable, formally verifiable timing behaviour that is consistent across the whole NoC. We show how the fundamental properties of Benes networks benefit MCE applications and meet our architecture requirements. Using SystemVerilog Assertions (SVA), formal properties are defined that aid the refinement of the specification of the design as well as enabling the implementation to be exhaustively formally verified. We demonstrate the performance of the design in terms of size, throughput and predictability, and discuss the application level considerations needed to exploit this architecture

    Swallow:Building an Energy-Transparent Many-Core Embedded Real-Time System

    Get PDF
    Swallow is a many-core platform of interconnected embedded real time processors with time-deterministic execution and a cache-less memory subsystem. Its largest current configuration is 480 Ɨ 32-bit processors. It is open-source, designed from the ground up to allow the exploration of flexibility, scalability and energy efficiency in large systems of embedded processors. Further, it enables the behavior of various structures of parallel programs to be explored. It is a proof of concept and design example for other potential systems of this kind. We present the energy transparency features and proportional energy scaling of the system that allows it to be expanded beyond hundreds of cores. We discuss the design choices, construction and novel network implementation of Swallow. Currently, the system provides up to 240 GIPS, with each core consuming 71ā€“193 mW, dependent on workload. Its power per instruction is lower than almost all systems of comparable scale. We discuss the challenges associated with efficiently utilizing this system, particularly communication/computation ratios, and give recommendations for future systems and their software

    Static analysis of energy consumption for LLVM IR programs

    Get PDF
    Energy models can be constructed by characterizing the energy consumed by executing each instruction in a processor's instruction set. This can be used to determine how much energy is required to execute a sequence of assembly instructions, without the need to instrument or measure hardware. However, statically analyzing low-level program structures is hard, and the gap between the high-level program structure and the low-level energy models needs to be bridged. We have developed techniques for performing a static analysis on the intermediate compiler representations of a program. Specifically, we target LLVM IR, a representation used by modern compilers, including Clang. Using these techniques we can automatically infer an estimate of the energy consumed when running a function under different platforms, using different compilers. One of the challenges in doing so is that of determining an energy cost of executing LLVM IR program segments, for which we have developed two different approaches. When this information is used in conjunction with our analysis, we are able to infer energy formulae that characterize the energy consumption for a particular program. This approach can be applied to any languages targeting the LLVM toolchain, including C and XC or architectures such as ARM Cortex-M or XMOS xCORE, with a focus towards embedded platforms. Our techniques are validated on these platforms by comparing the static analysis results to the physical measurements taken from the hardware. Static energy consumption estimation enables energy-aware software development, without requiring hardware knowledge

    Chapter Measuring Energy

    Get PDF
    Data centres are part of today's critical information and communication infrastructure, and the majority of business transactions as well as much of our digital life now depend on them. At the same time, data centres are large primary energy consumers, with energy consumed by IT and server room air conditioning equipment and also by general building facilities. In many data centres, IT equipment energy and cooling energy requirements are not always coordinated, so energy consumption is not optimised. Most data centres lack an integrated energy management system that jointly optimises and controls all its energy consuming equipments in order to reduce energy consumption and increase the usage of local renewable energy sources. In this chapter, the authors discuss the challenges of coordinated energy management in data centres and present a novel scalable, integrated energy management system architecture for data centre wide optimisation. A prototype of the system has been implemented, including joint workload and thermal management algorithms. The control algorithms are evaluated in an accurate simulationā€based model of a real data centre. Results show significant energy savings potential, in some cases up to 40%, by integrating workload and thermal management

    Measuring Energy

    Get PDF
    This chapter provides an introduction to quantifying the energy consumed by software. It is written for computer scientists, software engineers, embedded system developers and programmers who want to understand how to measure the energy consumed by the code they write in order to optimize for energy efficiency. We start with an overview of the electrical foundations of energy measurement and show how these are applied by reviewing the most commonly found energy sensing techniques. This is followed by a brief discussion of the signal processing required to obtain energy consumption data from sensing. We then present two energy measurement systems that are based on sensing techniques. Both can be used to directly measure the energy consumed by software running on embedded systems without the need to modify the hardware. As an alternative, regression-based techniques can be used to infer energy consumption based on monitoring events during program execution using counters monitors offered by the hardware. We introduce the foundations of regression analysis and illustrate how an energy model for an ARM processor can be built using linear regression. In the conclusion, we offer a wider discussion on what should be considered when selecting an energy measurement technique
    corecore