14 research outputs found

    Capillary Electrophoresis–Nanoelectrospray Ionization–Selected Reaction Monitoring Mass Spectrometry via a True Sheathless Metal-Coated Emitter Interface for Robust and High-Sensitivity Sample Quantification

    No full text
    A new sheathless transient capillary isotachophoresis (CITP)/capillary zone electrophoresis (CZE)–MS interface, based on a commercially available capillary with an integrated metal-coated ESI emitter, was developed in this study aiming at overcoming the reproducibility and ruggedness problems suffered to a certain degree by almost all the available CE–MS interfaces, and pushing the CE–MS technology suitable for routine sample analysis with high sensitivity. The new CITP/CZE–MS interface allows the electric contact between ESI voltage power supply and the CE separation liquid by using a conductive liquid that comes in contact with the metal-coated surface of the ESI emitter, making it a true sheathless CE–MS interface. Stable electrospray was established by avoiding the formation of gas bubbles from electrochemical reaction inside the CE capillary. Crucial operating parameters, such as sample loading volume, flow rate, and separation voltage, were systematically evaluated for their effects on both CITP/CZE separation efficiency and MS detection sensitivity. Around one hundred CITP/CZE–MS analyses can be easily achieved by using the new sheathless CITP/CZE interface without a noticeable loss of metal coating on the ESI emitter surface, or degrading of the ESI emitter performance. The reproducibility in analyte migration time and quantitative performance of the new interface was experimentally evaluated to demonstrate a LOQ below 5 attomole

    Capillary Isotachophoresis-Nanoelectrospray Ionization-Selected Reaction Monitoring MS via a Novel Sheathless Interface for High Sensitivity Sample Quantification

    No full text
    A novel sheathless capillary isotachophoresis (CITP/CZE)–mass spectrometry (MS) interface featuring a large inner diameter (i.d.) separation capillary, and a detachable small i.d. porous electrospray ionization (ESI) emitter was developed in this study to simultaneously achieve large sample loading capacity and stable nanoESI operation. Crucial operating parameters, including sample loading volume, flow rate, and separation window, were systematically investigated to attain optimum CITP/CZE separation efficiency and MS detection sensitivity. The performance of CITP/CZE–nanoESI-MS using the new sheathless interface was evaluated for its achievable low limit of quantification (LOQ) by analyzing targeted peptides, leu-enkephalin and angiotensin II, spiked in a BSA tryptic digest matrix at different concentrations. A linear dynamic range spanning 4.5 orders of magnitude and a 10 pM LOQ with measurement reproducibility of the CV < 22% were obtained experimentally for both targeted peptides, representing a 5-fold sensitivity improvement as compared to using the sheath liquid interface developed previously

    Effective coupling of CE with nanoESI MS via a true sheathless metal-coated emitter interface for robust and high sensitivity sample quantification (ASMS 2016)

    No full text
    <p>Capillary electrophoresis (CE) coupled with mass spectrometry (MS) is a promising alternative to conventional liquid chromatography (LC) MS in chemical and biological sample analysis due to its high resolving power and fast separation speed. Reproducibility and ruggedness problems, suffered to a certain degree by almost all the CE-MS interfaces, limit its broad applications. We present the development of a new sheathless CE-MS interface aiming at overcoming these problems and pushing CE-MS suitable to routine sample analysis with high sensitivity. A systematic evaluation of the new interface was performed using a hybrid capillary isotachophoresis (CITP) and capillary zone electrophoresis (CZE) separation coupled with electrospray ionization (ESI) MS for its achievable sensitivity and reproducibility in sample quantification. </p

    A Fully Automated Online Enrichment and Separation System for Highly Reproducible and In-Depth Analysis of Intact Glycopeptide

    No full text
    A fully automated online enrichment and separation system for intact glycopeptides, named AutoGP, was developed in this study by integrating three different columns in a nano-LC system. Specifically, the peptide mixture from the enzymatic digestion of a complex biological sample was first loaded on a hydrophilic interaction chromatography (HILIC) column. The nonglycopeptides in the sample were washed off the column, and the glycopeptides retained by the HILIC column were eluted to a C18 trap column to achieve an automated glycopeptide enrichment. The enriched glycopeptides were further eluted to a C18 column for separation, and the separated glycopeptides were eventually analyzed by using an orbitrap mass spectrometer (MS). The optimal operating conditions for AutoGP were systemically studied, and the performance of the fully optimized AutoGP was compared with a conventional manual system used for glycopeptide analysis. The experimental evaluation shows that the total number of glycopeptides identified is at least 1.5-fold higher, and the median coefficient of variation for the analyses is at least 50% lower by using AutoGP, as compared to the results acquired by using the manual system. In addition, AutoGP can perform effective analysis even with a 1-ÎĽg sample amount, while a 10-ÎĽg sample at least will be needed by the manual system, implying an order of magnitude better sensitivity of AutoGP. All the experimental results have consistently proven that AutoGP can be used for much better characterization of intact glycopeptides

    Peak Detection Algorithm for Mass Spectrometry Integrating Weighted Continuous Wavelet Transform with Particle Swarm Optimization-Based Otsu

    No full text
    Peak detection is an important step in mass spectrometry as accurately identifying characteristic peaks is key to data analysis. In order to address the issue of false peak detection, while simultaneously ensuring accurate detection of weak and overlapped peaks, this paper introduces an improved algorithm for mass spectrometry integrating weighted continuous wavelet transform with particle swarm optimization-based Otsu (WWTPO). The algorithm applies the weighted continuous wavelet transform (WCWT) to compress the frequency spectrum signal into a smaller scale range, which allows for the acquisition of more distinct and informative peak information. Moreover, the algorithm employs the particle swarm optimization (PSO) algorithm to iteratively evaluate the optimal image segmentation threshold, which addresses the challenge of inaccurate Otsu image segmentation. The method was applied to detect simulated peaks as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) datasets. The performance evaluation was conducted using receiver operating characteristic (ROC) curves, F1 measure and F-scores. Through comparison with continuous wavelet transform (CWT) and genetic algorithm-based threshold segmentation (WSTGA), multi-scale peak detection (MSPD) and CWT and image segmentation (CWT-IS), the results demonstrate that WWTPO exhibits excellent performance in peak detection. The determination of 4-isopropyltoluene also demonstrates that WWTPO has excellent practical application. This method not only maintains a low false peak identification rate but also detects more weak peaks and overlapping peaks, further improving the accuracy and efficiency of peak detection in mass spectrometry.</p

    Quantifying Kinase-Specific Phosphorylation Stoichiometry Using Stable Isotope Labeling In a Reverse In-Gel Kinase Assay

    No full text
    Despite recent advancements in large-scale phosphoproteomics, methods to quantify kinase-specific phosphorylation stoichiometry of protein substrates are lacking. We developed a method to quantify kinase-specific phosphorylation stoichiometry by combining the reverse in-gel kinase assay (RIKA) with high-resolution liquid chromatography–mass spectrometry (LC–MS). Beginning with predetermined ratios of phosphorylated to nonphosphorylated protein kinase CK2 (CK2) substrate molecules, we employed <sup>18</sup>O-labeled adenosine triphosphate (<sup>18</sup>O-ATP) as the phosphate donor in a RIKA, then quantified the ratio of <sup>18</sup>O- versus <sup>16</sup>O-labeled tryptic phosphopeptide using high mass accuracy mass spectrometry (MS). We demonstrate that the phosphorylation stoichiometry determined by this method across a broad percent phosphorylation range correlated extremely well with the predicted value (correlation coefficient = 0.99). This approach provides a quantitative alternative to antibody-based methods of determining the extent of phosphorylation of a substrate pool

    Efficient Mass Spectrometry Peak Detection by Combining Resolution Enhancement and Image Segmentation

    No full text
    Mass spectrometry data may be affected by random noise and baseline drift due to experimental instruments and conditions, posing significant challenges for detecting spectral peaks, particularly when identifying weak and separating overlapping peaks. To increase the sensitivity and enhance the resolution, we propose a mass spectral peak detection algorithm that integrates resolution enhancement and image segmentation. Initially, the extended Mexican hat wavelet is proposed by integrating the peak sharpening method with its wavelet. This approach accurately transforms mass spectra into wavelet space using the continuous wavelet transform. Subsequently, the triangular single-peak thresholding method, a more suitable threshold segmentation approach for spectral analysis, is introduced to identify ridges in the two-dimensional wavelet space. Compared to traditional Otsu and its improved variants, long-tailed single-peaked histograms are more effectively processed by this method with lower computational complexity, enabling faster identification of segmentation thresholds and image segmentation. Ultimately, peak positions are determined by utilizing ridge and valley lines in wavelet space along with the original spectrum. To evaluate the performance of the peak recognition algorithm, two metrics are introduced: the receiver operating characteristic (ROC) curve and the balanced F score (F1 score). When compared to multi-scale peak detection (MSPD), continuous wavelet transform and image segmentation (CWT-IS), the developed approach is more suitable for weak and highly overlapping peaks. The robustness and practicality of the method are verified through peak detection using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra.</p

    Improving <i>N</i>‑Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure

    No full text
    Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise in, for example, clinical biomarker discovery. However, the low glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera can hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and are prone to fragmentation. Here we show that, following liquid chromatographic separation on graphite columns, subambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile in comparison with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by the SPIN interface were observed at higher charge states for approximately half of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides

    Dual-Mode Gold Nanocluster-Based Nanoprobe Platform for Two-Photon Fluorescence Imaging and Fluorescence Lifetime Imaging of Intracellular Endogenous miRNA

    No full text
    Bioimaging is widely used in various fields of modern medicine. Fluorescence imaging has the advantages of high sensitivity, high selectivity, noninvasiveness, in situ imaging, and so on. However, one-photon (OP) fluorescence imaging has problems, such as low tissue penetration depth and low spatiotemporal resolution. These disadvantages can be solved by two-photon (TP) fluorescence imaging. However, TP imaging still uses fluorescence intensity as a signal. The complexity of organisms will inevitably affect the change of fluorescence intensity, cause false-positive signals, and affect the accuracy of the results obtained. Fluorescence lifetime imaging (FLIM) is different from other kinds of fluorescence imaging, which is an intrinsic property of the material and independent of the material concentration and fluorescence intensity. FLIM can effectively avoid the fluctuation of TP imaging based on fluorescence intensity and the interference of autofluorescence. Therefore, based on silica-coated gold nanoclusters (AuNCs@SiO2) combined with nucleic acid probes, the dual-mode nanoprobe platform was constructed for TP and FLIM imaging of intracellular endogenous miRNA-21 for the first time. First, the dual-mode nanoprobe used a dual fluorescence quencher of BHQ2 and graphene oxide (GO), which has a high signal-to-noise ratio and anti-interference. Second, the dual-mode nanoprobe can detect miR-21 with high sensitivity and selectivity in vitro, with a detection limit of 0.91 nM. Finally, the dual-mode nanoprobes performed satisfactory TP fluorescence imaging (330.0 μm penetration depth) and FLIM (τave = 50.0 ns) of endogenous miR-21 in living cells and tissues. The dual-mode platforms have promising applications in miRNA-based early detection and therapy and hold much promise for improving clinical efficacy

    Intelligent Biogenic Missile for Two-Photon Fluorescence Imaging-Guided Combined Photodynamic Therapy and Chemotherapy in Tumors

    No full text
    Photodynamic therapy (PDT) is a significant noninvasive therapeutic modality, but it is often limited in its application due to the restricted tissue penetration depth caused by the wavelength limitations of the light source. Two-photon (TP) fluorescence techniques are capable of having an excitation wavelength in the NIR region by absorbing two NIR photons simultaneously, which offers the potential to achieve higher spatial resolution for deep tissue imaging. Thus, the adoption of TP fluorescence techniques affords several discernible benefits for photodynamic therapy. Organic TP dyes possess a high fluorescence quantum yield. However, the biocompatibility of organic TP dyes is poor, and the method of coating organic TP dyes with silica can effectively overcome the limitations. Herein, based on the TP silica nanoparticles, a functionalized intelligent biogenic missile TP-SiNPs-G4(TMPyP4)-dsDNA(DOX)-Aptamer (TGTDDA) was developed for effective TP bioimaging and synergistic targeted photodynamic therapy and chemotherapy in tumors. First, the Sgc8 aptamer was used to target the PTK7 receptor on the surface of tumor cells. Under two-photon light irradiation, the intelligent biogenic missile can be activated for TP fluorescence imaging to identify tumor cells and the photosensitizer assembled on the nanoparticle surface can be activated for photodynamic therapy. Additionally, this intelligent biogenic missile enables the controlled release of doxorubicin (DOX). The innovative strategy substantially enhances the targeted therapeutic effectiveness of cancer cells. The intelligent biogenic missile provides an effective method for the early detection and treatment of tumors, which has a good application prospect in the real-time high-sensitivity diagnosis and treatment of tumors
    corecore