13,373 research outputs found
About maximally localized states in quantum mechanics
We analyze the emergence of a minimal length for a large class of generalized
commutation relations, preserving commutation of the position operators and
translation invariance as well as rotation invariance (in dimension higher than
one). We show that the construction of the maximally localized states based on
squeezed states generally fails. Rather, one must resort to a constrained
variational principle.Comment: accepted for publication in PR
Corrections to the black body radiation due to minimum-length deformed quantum mechanics
Planck spectrum of black body radiation is usually derived by considering of
quantized free electromagnetic field at a finite temperature. The
minimum-length deformed quantization affects field theory both at the first and
second quantization levels. Performing an exact calculation to the first order
in deformation parameter, both of the corrections turn out to be of the same
order. Nevertheless, the correction at the second quantization level has some
qualitative difference, that may be interesting for future study to
differentiate between these two sorts of corrections. In itself the correction
to the black body radiation seems to be innocuous in light of the big-bang
nucleosynthesis whenever the minimum length is less or equal to cm.Comment: 8 pages, Paper has been substantially revised - version to appear in
Phys. Lett.
On Nonlocality, Lattices and Internal Symmetries
We study functional analytic aspects of two types of correction terms to the
Heisenberg algebra. One type is known to induce a finite lower bound to the resolution of distances, a short distance cutoff which is motivated
from string theory and quantum gravity. It implies the existence of families of
self-adjoint extensions of the position operators with lattices of eigenvalues.
These lattices, which form representations of certain unitary groups cannot be
resolved on the given geometry. This leads us to conjecture that, within this
framework, degrees of freedom that correspond to structure smaller than the
resolvable (Planck) scale turn into internal degrees of freedom with these
unitary groups as symmetries. The second type of correction terms is related to
the previous essentially by "Wick rotation", and its basics are here considered
for the first time. In particular, we investigate unitarily inequivalent
representations.Comment: 6 pages, LaTe
A Covariant Information-Density Cutoff in Curved Space-Time
In information theory, the link between continuous information and discrete
information is established through well-known sampling theorems. Sampling
theory explains, for example, how frequency-filtered music signals are
reconstructible perfectly from discrete samples. In this Letter, sampling
theory is generalized to pseudo-Riemannian manifolds. This provides a new set
of mathematical tools for the study of space-time at the Planck scale: theories
formulated on a differentiable space-time manifold can be completely equivalent
to lattice theories. There is a close connection to generalized uncertainty
relations which have appeared in string theory and other studies of quantum
gravity.Comment: 4 pages, RevTe
- âŠ