4,909 research outputs found
Evaluating a dancer's performance using Kinect-based skeleton tracking
In this work, we describe a novel system that automatically evaluates dance performances against a gold-standard performance and provides visual feedback to the performer in a 3D virtual environment. The system acquires the motion of a performer via Kinect-based human skeleton tracking, making the approach viable for a large range of users, including home enthusiasts. Unlike traditional gaming scenarios, when the motion of a user must by kept in synch with a pre-recorded avatar that is displayed on screen, the technique described in this paper targets online interactive scenarios where dance choreographies can be set, altered, practiced and refined by users. In this work, we have addressed some areas of this application scenario. In particular, a set of appropriate signal processing and soft computing methodologies is proposed for temporally aligning dance movements from two different users and quantitatively evaluating one performance against another
Vision-based analysis of pedestrian traffic data
Reducing traffic congestion has become a major issue within urban environments. Traditional approaches, such as increasing road sizes, may prove impossible in certain scenarios, such as city centres, or ineffectual if current predictions of large growth in world traffic volumes hold true. An alternative approach lies with increasing the management efficiency of pre-existing infrastructure and public transport systems through the use of Intelligent Transportation Systems (ITS). In this paper, we focus on the requirement of obtaining robust pedestrian traffic flow data within these areas. We propose the use of a flexible and robust stereo-vision pedestrian detection and tracking approach as a basis for obtaining this information. Given this framework, we propose the use of a pedestrian indexing scheme and a suite of tools, which facilitates the declaration of user-defined pedestrian events or requests for specific statistical traffic flow data. The detection of the required events or the constant flow of statistical information can be incorporated into a variety of ITS solutions for applications in traffic management, public transport systems and urban planning
A multi-modal dance corpus for research into real-time interaction between humans in online virtual environments
We present a new, freely available, multimodal corpus for research into, amongst other areas, real-time realistic interaction between humans in online virtual environments. The specific corpus scenario focuses on an online dance class application scenario where students, with avatars driven by whatever 3D capture technology are locally available to them, can learn choerographies with teacher guidance in an online virtual ballet studio. As the data corpus is focused on this scenario, it consists of student/teacher dance choreographies concurrently captured at two different sites using a variety of media modalities, including synchronised audio rigs, multiple cameras, wearable inertial measurement devices and depth sensors. In the corpus, each of the several dancers perform a number of fixed choreographies, which are both graded according to a number of specific evaluation criteria. In addition, ground-truth dance choreography annotations are provided. Furthermore, for unsynchronised sensor modalities, the corpus also includes distinctive events for data stream synchronisation. Although the data corpus is tailored specifically for an online dance class application scenario, the data is free to download and used for any research and development purposes
Multi-sensor classification of tennis strokes
In this work, we investigate tennis stroke recognition
using a single inertial measuring unit attached to a player’s forearm during a competitive match. This paper evaluates the best approach for stroke detection using either accelerometers, gyroscopes or magnetometers, which are embedded into the inertial measuring unit. This work concludes what is the optimal training data set for stroke classification and proves that classifiers can perform well when tested on players who were not used to train the classifier. This work provides a significant step forward for our overall goal, which is to develop next generation sports coaching tools using both inertial and visual sensors in an instrumented indoor sporting environment
The TRECVID 2007 BBC rushes summarization evaluation pilot
This paper provides an overview of a pilot evaluation of
video summaries using rushes from several BBC dramatic series. It was carried out under the auspices of TRECVID.
Twenty-two research teams submitted video summaries of
up to 4% duration, of 42 individual rushes video files aimed
at compressing out redundant and insignificant material.
The output of two baseline systems built on straightforward
content reduction techniques was contributed by Carnegie
Mellon University as a control. Procedures for developing
ground truth lists of important segments from each video
were developed at Dublin City University and applied to
the BBC video. At NIST each summary was judged by
three humans with respect to how much of the ground truth
was included, how easy the summary was to understand,
and how much repeated material the summary contained.
Additional objective measures included: how long it took
the system to create the summary, how long it took the assessor to judge it against the ground truth, and what the
summary's duration was. Assessor agreement on finding desired segments averaged 78% and results indicate that while it is difficult to exceed the performance of baselines, a few systems did
PhD Forum: Investigating the performance of a multi-modal approach to unusual event detection
In this paper, we investigate the parameters under- pinning our previously presented system for detecting unusual events in surveillance applications [1]. The system identifies anomalous events using an unsupervised data-driven approach. During a training period, typical activities within a surveilled environment are modeled using multi-modal sensor readings. Significant deviations from the established model of regular activity can then be flagged as anomalous at run-time. Using this approach, the system can be deployed and automatically adapt for use in any environment without any manual adjustment. Experiments carried out on two days of audio-visual data were performed and evaluated using a manually annotated ground- truth. We investigate sensor fusion and quantitatively evaluate the performance gains over single modality models. We also investigate different formulations of our cluster-based model of usual scenes as well as the impact of dynamic thresholding on identifying anomalous events. Experimental results are promis- ing, even when modeling is performed using very simple audio and visual features
Enhanced visualisation of dance performance from automatically synchronised multimodal recordings
The Huawei/3DLife Grand Challenge Dataset provides multimodal recordings of Salsa dancing, consisting of audiovisual streams along with depth maps and inertial measurements. In this paper, we propose a system for augmented reality-based evaluations of Salsa dancer performances. An essential step for such a system is the automatic temporal synchronisation of the multiple modalities captured from different sensors, for which we propose efficient solutions. Furthermore, we contribute modules for the automatic analysis of dance performances and present an original software application, specifically designed for the evaluation scenario considered, which enables an enhanced dance visualisation experience, through the augmentation of the original media with the results of our automatic analyses
Benchmarking, Social Partnership and Higher Remuneration: Wage Settling Institutions and the Public-Private Sector Wage Gap in Ireland
This paper uses data from the 2003 and 2006 National Employment Surveys to analyse the public-private sector wage gap in Ireland. In particular, we investigate the impact of awards implemented under a number of wage setting institutions on the pay differential. These include the pay increases awarded by the Public Service Benchmarking Body in its first report and the increases given to higher-level posts in the public sector by the Review Body on Higher Remuneration in the Public Sector, Reports No. 40 and 41. The pay increases that were awarded under the Social Partnership process in Sustaining Progress and the Mid-Term Review of Part Two of Sustaining Progress are also captured in the data used. Furthermore, we assess the impact of pensions on the gap. The results indicate that the public sector pay premium increased dramatically from 9.7 to 21.6 per cent between 2003 and 2006. Furthermore, we found that by 2006 senior public service workers earned almost 8 per cent more than their private sector counterparts, while those in lower-level grades earned between 22 and 31 per cent more. The public premium results derived in this paper relating to March 2006 predate the payment of the two most recent Social Partnership wage deals, along with the pay increases awarded in the second Benchmarking exercise and by the Review Body on Higher Remuneration in Reports No. 42 and 43. The results presented raise serious questions with respect to the justification for any further boosts to the pay levels of public sector workers. Finally, the study highlights the importance of correcting for differences in pension coverage between public and private sector workers when making any assessment of the public-private sector pay differential.
Robust pedestrian detection and tracking in crowded scenes
In this paper, a robust computer vision approach to detecting and tracking pedestrians in unconstrained crowded scenes is presented. Pedestrian detection is performed via a 3D clustering process within a region-growing framework. The clustering process avoids using hard thresholds by using bio-metrically inspired constraints and a number of plan view statistics. Pedestrian tracking is achieved by formulating the track matching process as a weighted bipartite graph and using a Weighted Maximum Cardinality Matching scheme. The approach is evaluated using both indoor and outdoor sequences, captured using a variety of different camera placements and orientations, that feature significant challenges in terms of the number of pedestrians present, their interactions and scene lighting conditions. The evaluation is performed against a manually generated groundtruth for all sequences. Results point to the extremely accurate performance of the proposed approach in all cases
- …