3,154 research outputs found

    The Final Merger of Black-Hole Binaries

    Full text link
    Recent breakthroughs in the field of numerical relativity have led to dramatic progress in understanding the predictions of General Relativity for the dynamical interactions of two black holes in the regime of very strong gravitational fields. Such black-hole binaries are important astrophysical systems and are a key target of current and developing gravitational-wave detectors. The waveform signature of strong gravitational radiation emitted as the black holes fall together and merge provides a clear observable record of the process. After decades of slow progress, these mergers and the gravitational-wave signals they generate can now be routinely calculated using the methods of numerical relativity. We review recent advances in understanding the predicted physics of events and the consequent radiation, and discuss some of the impacts this new knowledge is having in various areas of astrophysics.Comment: 57 pages; 9 figures. Updated references & fixed typos. Published version is at http://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.010909.08324

    Black-hole binaries, gravitational waves, and numerical relativity

    Full text link
    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events, releasing tremendous amounts of energy in the form of gravitational radiation, and are key sources for both ground- and space-based gravitational-wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only be calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit could be simulated. Recently, however, a series of dramatic advances in numerical relativity has allowed stable, robust black-hole merger simulations. This remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging is chronicled. Important applications of these fundamental physics results to astrophysics, to gravitational-wave astronomy, and in other areas are also discussed.Comment: 54 pages, 42 figures. Some typos corrected & references updated. Essentially final published versio

    Decoding mode-mixing in black-hole merger ringdown

    Get PDF
    Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some m|m| \neq \ell modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes -- the anomalous (3,2)(3,2) harmonic mode -- measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.Comment: 15 pages, 10 figures, 2 tables; new version has improved Figs. 1-3, consistent labelling of simulations between Tables I & II, additional/corrected references, and extra hyphen

    Post-Newtonian Initial Data with Waves: Progress in Evolution

    Full text link
    In Kelly et al. [Phys. Rev. D, 76:024008, 2007], we presented new binary black-hole initial data adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to 2.5 post-Newtonian order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. We report on progress in evolving this data with a modern moving-puncture implementation of the BSSN equations in several numerical codes. We discuss the effect of the new metric terms on junk radiation and continuity of physical radiation extracted.Comment: 13 pages, 9 figures. Invited paper from Numerical Relativity and Data Analysis (NRDA) 2009, Albert Einstein Institute, Potsdam. Corrected to match published version

    Gravitational-Wave Data Analysis with Spinning Merger-Ringdown Waveforms

    Get PDF
    The recent availability of high-quality, gravitational merger-ringdown waveforms from spinning black-hole systems has made possible the development of multi-mode GW templates for use in data-analysis studies of current and proposed interferometric GW detectors. We report on recent work at NASA Goddard, analyzing the most significant modes from aligned-spin black-hole-binary mergers. From these, we have developed time-domain merger-ringdown GW templates covering the aligned-spin portion of parameter space. We also discuss how using the full information content of aligned-spin mergers can significantly reduce uncertainties in some parameters, emphasizing the significant gains possible in the last stages of merger, inaccessible to inspiral-only post-Newtonian templates

    Observing mergers of non-spinning black-hole binaries

    Full text link
    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied mass ratio on merger signal-to-noise ratios (SNRs) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our 1:1 (equal mass) and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate-mass-ratio systems.Comment: 13 pages, 11 figures, submitted to Phys. Rev.

    Electromagnetic Chirps from Neutron Star-Black Hole Mergers

    Get PDF
    We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.Comment: 13 pages, 5 figures, submitted to Ap

    Prompt Electromagnetic Transients from Binary Black Hole Mergers

    Get PDF
    Binary black hole (BBH) mergers provide a prime source for current and future interferometric GW observatories. Massive BBH mergers may often take place in plasma-rich environments, leading to the exciting possibility of a concurrent electromagnetic (EM) signal observable by traditional astronomical facilities. However, many critical questions about the generation of such counterparts remain unanswered. We explore mechanisms that may drive EM counterparts with magnetohydrodynamic simulations treating a range of scenarios involving equal-mass black-hole binaries immersed in an initially homogeneous fluid with uniform, orbitally aligned magnetic fields. We find that the time development of Poynting luminosity, which may drive jet-like emissions, is relatively insensitive to aspects of the initial configuration. In particular, over a significant range of initial values, the central magnetic field strength is effectively regulated by the gas flow to yield a Poynting luminosity of 10451046ρ13M82ergs110^{45}-10^{46} \rho_{-13} M_8^2 \, {\rm erg}\,{\rm s}^{-1}, with BBH mass scaled to M8M/(108M)M_8 \equiv M/(10^8 M_{\odot}) and ambient density ρ13ρ/(1013gcm3)\rho_{-13} \equiv \rho/(10^{-13} \, {\rm g} \, {\rm cm}^{-3}). We also calculate the direct plasma synchrotron emissions processed through geodesic ray-tracing. Despite lensing effects and dynamics, we find the observed synchrotron flux varies little leading up to merger.Comment: 22 pages, 21 figures; additional reference + clarifying text added to match published versio

    Improved Moving Puncture Gauge Conditions for Compact Binary Evolutions

    Get PDF
    Robust gauge conditions are critically important to the stability and accuracy of numerical relativity (NR) simulations involving compact objects. Most of the NR community use the highly robust---though decade-old---moving-puncture (MP) gauge conditions for such simulations. It has been argued that in binary black hole (BBH) evolutions adopting this gauge, noise generated near adaptive-mesh-refinement (AMR) boundaries does not converge away cleanly with increasing resolution, severely limiting gravitational waveform accuracy at computationally feasible resolutions. We link this noise to a sharp (short-wavelength), initial outgoing gauge wave crossing into progressively lower resolution AMR grids, and present improvements to the standard MP gauge conditions that focus on stretching, smoothing, and more rapidly settling this outgoing wave. Our best gauge choice greatly reduces gravitational waveform noise during inspiral, yielding less fluctuation in convergence order and 40\sim 40% lower waveform phase and amplitude errors at typical resolutions. Noise in other physical quantities of interest is also reduced, and constraint violations drop by more than an order of magnitude. We expect these improvements will carry over to simulations of all types of compact binary systems, as well as other NN+1 formulations of gravity for which MP-like gauge conditions can be chosen.Comment: 25 pages, 16 figures, 2 tables. Matches published versio

    Consistency of post-Newtonian waveforms with numerical relativity

    Get PDF
    General relativity predicts the gravitational wave signatures of coalescing binary black holes. Explicit waveform predictions for such systems, required for optimal analysis of observational data, have so far been achieved using the post-Newtonian (PN) approximation. The quality of this treatment is unclear, however, for the important late-inspiral portion. We derive late-inspiral waveforms via a complementary approach, direct numerical simulation of Einstein's equations. We compare waveform phasing from simulations of the last 14\sim 14 cycles of gravitational radiation from equal-mass, nonspinning black holes with the corresponding 2.5PN, 3PN, and 3.5PN orbital phasing. We find phasing agreement consistent with internal error estimates based on either approach, suggesting that PN waveforms for this system are effective until the last orbit prior to final merger.Comment: Replaced with published version -- one figure removed, text and other figures updated for clarity of discussio
    corecore