15,870 research outputs found

    New <sup>40</sup>Ar/<sup>39</sup>Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: Implications for duration of flood basalt eruption episodes

    Get PDF
    Grande Ronde Basalt (GRB) lavas represent the most voluminous eruptive pulse of the Columbia River-Snake River-Yellowstone hotspot volcanism. With an estimated eruptive volume of 150,000 km3, GRB lavas form at least 66% of the total volume of the Columbia River Basalt Group. New 40Ar/39Ar dates for GRB lavas reveal they were emplaced within a maximum period of 0.42 ± 0.18 My. A well-documented stratigraphy indicates at least 110 GRB flow fields (or individual eruptions), and on this basis suggests an average inter-eruption hiatus of less than 4,000 years. Isotopic age-dating cannot resolve time gaps between GRB eruptions, and it is difficult to otherwise form a picture of the durations of eruptions because of non-uniform weathering in the top of flow fields and a general paucity of sediments between GR lavas. Where sediment has formed on top of the GRB, it varies in thickness from zero to 20-30 cm of silty to fine-sandy material, with occasional diatomaceous sediment. Individual GRB eruptions varied considerably in volume but many were greater than 1000 km3 in size. Most probably eruptive events were not equally spaced in time; some eruptions may have followed short periods of volcanic repose (perhaps 102 to 103 of yrs), whilst others could have been considerably longer (many 1000 s to > 104 yrs). Recent improvements in age-dating for other continental flood basalt (CFB) lava sequences have yielded estimates of total eruptive durations of less than 1 My for high-volume pulses of lava production. The GRB appears to be a similar example, where the main pulse occupied a brief period. Even allowing for moderate to long-duration pahoehoe flow field production, the amount of time the system spends in active lava-producing mode is small – less than c. 2.6% (based on eruption durations of approximately 10,000 yrs, as compared to the duration of the entire eruptive pulse of c. 420,000 yrs). A review of available 40Ar/39Ar data for the major voluminous phases of the Columbia River Basalt Group suggests that activity of the Steens Basalt-Imnaha Basalt-GRB may have, at times, been simultaneous, with obvious implications for climatic effects. Resolving intervals between successive eruptions during CFB province construction, and durations of main eruptive pulses, remains vital to determining the environmental impact of these huge eruptions

    Qualitative Criterion for Interception in a Pursuit/Evasion Game

    Full text link
    A qualitative account is given of a differential pursuit/evasion game. A criterion for the existence of an intercept solution is obtained using future cones that contain all attainable trajectories of target or interceptor originating from an initial position. A sufficient and necessary conditon that an opportunity to intercept always exist is that, after some initial time, the future cone of the target be contained within the future cone of the interceptor. The sufficient condition may be regarded as a kind of Nash equillibrium.Comment: 8 pages; revsions and corrigend

    1I/2017 U1 (`Oumuamua) is Hot: Imaging, Spectroscopy and Search of Meteor Activity

    Get PDF
    1I/2017 U1 (`Oumuamua), a recently discovered asteroid in a hyperbolic orbit, is likely the first macroscopic object of extrasolar origin identified in the solar system. Here, we present imaging and spectroscopic observations of \textquoteleft Oumuamua using the Palomar Hale Telescope as well as a search of meteor activity potentially linked to this object using the Canadian Meteor Orbit Radar. We find that \textquoteleft Oumuamua exhibits a moderate spectral gradient of 10%±6% (100 nm)−110\%\pm6\%~(100~\mathrm{nm})^{-1}, a value significantly lower than that of outer solar system bodies, indicative of a formation and/or previous residence in a warmer environment. Imaging observation and spectral line analysis show no evidence that \textquoteleft Oumuamua is presently active. Negative meteor observation is as expected, since ejection driven by sublimation of commonly-known cometary species such as CO requires an extreme ejection speed of ∼40\sim40 m s−1^{-1} at ∼100\sim100 au in order to reach the Earth. No obvious candidate stars are proposed as the point of origin for \textquoteleft Oumuamua. Given a mean free path of ∼109\sim10^9 ly in the solar neighborhood, \textquoteleft Oumuamua has likely spent a very long time in the interstellar space before encountering the solar system.Comment: ApJL in pres
    • …
    corecore