16,326 research outputs found

    Ice nucleus activity measurements of solid rocket motor exhaust particles

    Get PDF
    The ice Nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20 C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely

    Space shuttle exhaust cloud properties

    Get PDF
    A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote

    Electrical transport in the ferromagnetic state of manganites: Small-polaron metallic conduction at low temperatures

    Full text link
    We report measurements of the resistivity in the ferromagnetic state of epitaxial thin films of La_{1-x}Ca_{x}MnO_{3} and the low temperature specific heat of a polycrystalline La_{0.8}Ca_{0.2}MnO_{3}. The resistivity below 100 K can be well fitted by \rho - \rho_{o} = E \omega_{s}/sinh^{2}(\hbar \omega_{s}/2k_{B}T) with \hbar \omega_{s}/k_{B} \simeq 100 K and E being a constant. Such behavior is consistent with small-polaron coherent motion which involves a relaxation due to a soft optical phonon mode. The specific heat data also suggest the existence of such a phonon mode. The present results thus provide evidence for small-polaron metallic conduction in the ferromagnetic state of manganites.Comment: 4 pages, 4 figures, submitted to PR

    Challenges to smartphone applications for melanoma detection

    Get PDF
    This commentary addresses the emerging market for health-related smartphone applications. Specific to dermatology, there has been a significant increase not only in applications that promote skin cancer awareness and education but also in those meant for detection. With evidence showing that 365 dermatology-related applications were available in 2014--up from 230 in 2012--and that 1 in 5 patients under the age of 50 have used a smartphone to help diagnose a skin problem, there is clearly a large subset of patients participating in this growing trend. Therefore, we are obligated to take a closer look into this phenomenon. Studies have shown that applications are inferior to in-person consultations with one study showing that 3 out of 4 applications incorrectly classified 30% or more melanomas as low-risk lesions. Although the FDA gained regulatory oversight over mobile health applications in 2012 and recently released their statement in 2015, their reach only extends to cover a selected portion of these applications, leaving many unregulated as they continue to be marketed toward our patients. Dermatologists should be updated on our current situation in order to properly counsel patients on the risks and benefits of these applications and whether they are acceptable for use. © 2016 by the article author(s)

    Double window viewing chamber assembly

    Get PDF
    A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter

    Advantages of ice crystal growth experiments in a low gravity environment

    Get PDF
    The effects of convective fluid motions and mechanical supports on ice crystal growth in experiments conducted on earth can be inferred from studies conducted in their absence in a low-gravity environment. Current experimental results indicate the effects may be significant

    Adhesion between atomically pure metallic surfaces, part IV Semiannual report

    Get PDF
    Adhesion between metal couples in vacuum environment and use of contact resistance measurements to evaluate surface contaminatio

    Ice crystal growth in a dynamic thermal diffusion chamber

    Get PDF
    Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s

    Robust single-parameter quantized charge pumping

    Full text link
    This paper investigates a scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAs-GaAs gated nanowire. We find a remarkable robustness of the quantized regime against variations in the driving signal, which increases with applied rf power. This feature together with its simple configuration makes this device a potential module for a scalable source of quantized current.Comment: Submitted to Appl. Phys. Let
    corecore