77 research outputs found
From Sparse Signals to Sparse Residuals for Robust Sensing
One of the key challenges in sensor networks is the extraction of information
by fusing data from a multitude of distinct, but possibly unreliable sensors.
Recovering information from the maximum number of dependable sensors while
specifying the unreliable ones is critical for robust sensing. This sensing
task is formulated here as that of finding the maximum number of feasible
subsystems of linear equations, and proved to be NP-hard. Useful links are
established with compressive sampling, which aims at recovering vectors that
are sparse. In contrast, the signals here are not sparse, but give rise to
sparse residuals. Capitalizing on this form of sparsity, four sensing schemes
with complementary strengths are developed. The first scheme is a convex
relaxation of the original problem expressed as a second-order cone program
(SOCP). It is shown that when the involved sensing matrices are Gaussian and
the reliable measurements are sufficiently many, the SOCP can recover the
optimal solution with overwhelming probability. The second scheme is obtained
by replacing the initial objective function with a concave one. The third and
fourth schemes are tailored for noisy sensor data. The noisy case is cast as a
combinatorial problem that is subsequently surrogated by a (weighted) SOCP.
Interestingly, the derived cost functions fall into the framework of robust
multivariate linear regression, while an efficient block-coordinate descent
algorithm is developed for their minimization. The robust sensing capabilities
of all schemes are verified by simulated tests.Comment: Under review for publication in the IEEE Transactions on Signal
Processing (revised version
Sparse Volterra and Polynomial Regression Models: Recoverability and Estimation
Volterra and polynomial regression models play a major role in nonlinear
system identification and inference tasks. Exciting applications ranging from
neuroscience to genome-wide association analysis build on these models with the
additional requirement of parsimony. This requirement has high interpretative
value, but unfortunately cannot be met by least-squares based or kernel
regression methods. To this end, compressed sampling (CS) approaches, already
successful in linear regression settings, can offer a viable alternative. The
viability of CS for sparse Volterra and polynomial models is the core theme of
this work. A common sparse regression task is initially posed for the two
models. Building on (weighted) Lasso-based schemes, an adaptive RLS-type
algorithm is developed for sparse polynomial regressions. The identifiability
of polynomial models is critically challenged by dimensionality. However,
following the CS principle, when these models are sparse, they could be
recovered by far fewer measurements. To quantify the sufficient number of
measurements for a given level of sparsity, restricted isometry properties
(RIP) are investigated in commonly met polynomial regression settings,
generalizing known results for their linear counterparts. The merits of the
novel (weighted) adaptive CS algorithms to sparse polynomial modeling are
verified through synthetic as well as real data tests for genotype-phenotype
analysis.Comment: 20 pages, to appear in IEEE Trans. on Signal Processin
- …