2 research outputs found

    Identification of 1‑({[1-(4-Fluorophenyl)-5-(2-methoxyphenyl)‑1<i>H</i>‑pyrazol-3-yl]carbonyl}amino)cyclohexane Carboxylic Acid as a Selective Nonpeptide Neurotensin Receptor Type 2 Compound

    No full text
    Compounds active at neurotensin receptors (NTS1 and NTS2) exert analgesic effects on different types of nociceptive modalities, including thermal, mechanical, and chemical stimuli. The NTS2 preferring peptide JMV-431 (<b>2</b>) and the NTS2 selective nonpeptide compound levocabastine (<b>6</b>) have been shown to be effective in relieving the pain associated with peripheral neuropathies. With the aim of identifying novel nonpeptide compounds selective for NTS2, we examined analogues of SR48692 (<b>5a</b>) using a FLIPR calcium assay in CHO cells stably expressing rat NTS2. This led to the discovery of the NTS2 selective nonpeptide compound 1-({[1-(4-fluorophenyl)-5-(2-methoxyphenyl)-1<i>H</i>-pyrazol-3-yl]­carbonyl}­amino)­cyclohexane carboxylic acid (NTRC-739, <b>7b</b>) starting from the nonselective compound <b>5a</b>

    Identification of 2‑({[1-(4-Fluorophenyl)-5-(2-meth­oxy­phen­yl)‑1<i>H</i>‑pyr­azol-3-yl]­carb­onyl}ami­no)tri­cyclo[3.3.1.13,7]­dec­ane-2-carb­oxy­lic Acid (NTRC-844) as a Selective Antagonist for the Rat Neurotensin Receptor Type 2

    No full text
    Neurotensin receptor type 2 (NTS2) compounds display analgesic activity in animal pain models. We have identified the first high-affinity NTS2-selective antagonist (<b>8</b>) that is active in vivo. This study also revealed that the NTS2 FLIPR assay designation for a compound, agonist, partial agonist, and so forth, did not correlate with its in vivo activity as observed in the thermal tail-flick acute model of pain. This suggests that calcium mobilization is not the signaling pathway involved in NTS2-mediated analgesia as assessed by the thermal tail-flick model. Finally, we found a significant bias between rat and human for compound <b>9</b> in the NTS2 binding assay
    corecore