199 research outputs found
Analysis and Design of Crew Sleep Station for ISS
This paper details the analysis and design of the Temporary Sleep Station (TeSS) environmental control system for International Space Station (ISS). The TeSS will provide crewmembers with a private and personal space, to accommodate sleeping, donning and doffing of clothing, personal communication and performance of recreational activities. The need for privacy to accommodate these activities requires adequate ventilation inside the TeSS. This study considers whether temperature, carbon dioxide, and humidity within the TeSS remain within crew comfort and safety levels for various expected operating scenarios. Evaluation of these scenarios required the use and integration of various simulation codes. An approach was adapted for this study, whereby results from a particular code were integrated with other codes when necessary. Computational Fluid Dynamics (CFD) methods were used to evaluate the flow field inside the TeSS, from which local gradients for temperature, velocity, and species concentration such as CO (sub 2) could be determined. A model of the TeSS, containing a human, as well as equipment such as a laptop computer, was developed in FLUENT, a finite-volume code. Other factors, such as detailed analysis of the heat transfer through the structure, radiation, and air circulation from the TeSS to the US Laboratory Aisle, where the TeSS is housed, were considered in the model. A complementary model was developed in G189A, a code which has been used by NASA/JSC for environmental control systems analyses since the Apollo program. Boundary conditions were exchanged between the FLUENT and G189A TeSS models. G189A provides human respiration rates to the FLUENT model, while the FLUENT model provides local convective heat transfer coefficients to G189A model. An additional benefit from using an approach with both a systems simulation and CFD model, is the capability to verify the results of each model by comparison to the results of the other model. The G189A and FLUENT models were used to evaluate various ventilation designs for the TeSS over a range of operating conditions with varying crew metabolic load, equipment operating modes, ventilation flow rates, and with the TeSS doors open and closed. Results from the study were instrumental in the optimization of a design for the TeSS ventilation hardware. A special case was considered where failure of the TeSS ventilation system occurred. In this case, a study was conducted in order to determine the time required for the CO (sub 2) concentration inside the TeSS to increase to ISS limit values under transient conditions. A lumped-capacitance code, SINDA-FLUINT was used in this case to provide accurate predictions of the human reaction to the TeSS cabin conditions including core and skin temperatures and body heat storage. A simple two-dimensional CFD model of a crewmember inside the TeSS was developed in FLUENT in order to determine the volume envelope of the respired air from the human, which maintained a minimum velocity profile. This volume was then used in the SINDA-FLUINT model to facilitate the calculations of CO (sub 2) concentrations, dry bulb temperatures and humidity levels inside the TeSS
Investigation of a Large Gap Cold Plasma Reactor for Continuous In-package Decontamination of Fresh Strawberries and Spinach
The aim of this work was to investigate the efficacy of a large gap atmospheric cold plasma (ACP) generated with an open-air high-voltage dielectric barrier discharge (DBD) pilot-scale reactor, operated in either static (batch) or continuous mode for produce decontamination and quality retention. Significant reductions in the bacterial populations inoculated on the strawberries and spinach were obtained after the static mode of ACP treatment with 2.0 and 2.2 log10 CFU/ml reductions for E. coli and 1.3 and 1.7 log10 CFU/ml reductions for L. innocua, respectively. Continuous treatment was effective against L. innocua inoculated on strawberries, with 3.8 log10 CFU/ml reductions achieved. No significant differences in colour, firmness, pH or total soluble solids (TSS) was observed between control and ACP-treated samples with the effects of treatment retained during the shelf-life period. The pilot-scale atmospheric air plasma reactor retained the strawberry quality characteristics in tandem with useful antimicrobial efficacy. Industrial relevance This in-package plasma technology approach is a low-power, water-free, non-thermal, post-package treatment. Generating cold plasma discharges inside food packages achieved useful antimicrobial effects on fresh produce. Depending on the bacterial type, produce and mode of ACP treatment significant reductions in the populations of pathogenic microorganisms attached to the fresh produce was achieved within 2.5 min of treatment. The principal technical advantages include contaminant control, quality retention, mitigation of re-contamination and crucially the retention of bactericidal reactive gas molecules in the food package volume, which then revert back to the original gas
Convective Fingering of an Autocatalytic Reaction Front
We report experimental observations of the convection-driven fingering
instability of an iodate-arsenous acid chemical reaction front. The front
propagated upward in a vertical slab; the thickness of the slab was varied to
control the degree of instability. We observed the onset and subsequent
nonlinear evolution of the fingers, which were made visible by a {\it p}H
indicator. We measured the spacing of the fingers during their initial stages
and compared this to the wavelength of the fastest growing linear mode
predicted by the stability analysis of Huang {\it et. al.} [{\it Phys. Rev. E},
{\bf 48}, 4378 (1993), and unpublished]. We find agreement with the thickness
dependence predicted by the theory.Comment: 11 pages, RevTex with 3 eps figures. To be published in Phys Rev E,
[email protected], [email protected], [email protected]
On The Optimal Realignment Of A Contest: The Case Of College Football
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140004/1/ecin12493_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/140004/2/ecin12493.pd
A drugs marketing company salary system design
内容摘要薪酬制度是企业人力资源管理的核心。它体现了企业人力资源价值的分配和人力资源管理理念。企业在设计新酬制度的过程中,必须在其经营战略的框架下,通过对其薪酬组成元素的优化配置,以整体薪酬制度的形式来发挥薪酬效能,以支持企业战略目标的实现和满足员工多元化的需求。企业营销人员薪酬制度问题,是营销管理中的一个重要课题,建立一套科学、有效的销售人员薪酬制度并非易事。世界上没有通用、固定不变的某种销售薪酬制度,它将随企业营销战略、模式、渠道,所提供的产品或服务性质,细分客户群和客户类型等的不同而存在差异。可以说,不同类型的销售人员、不同类型的企业、不同类型的市场,就有不同类型的薪酬制度。本文从薪酬的基...ABSTRACT Salary system is the core of human resource management for enterprise. It expresses the enterprise’s value distribution and management idea of human resource. When an enterprise initiates its salary system, it is very important for them to optimize the allocation of salary elements based on the enterprise’s operation strategy so as to maximize the efficiency of salary system by way ...学位:工商管理硕士院系专业:管理学院高级经理教育中心(EMBA项目)_管理经济学学号:X20031503
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Beyond the Shade of the Oak Tree: The Recent Growth of Johannine Studies
The recent growth within Johannine studies has developed as a result of several factors. First, the discovery of the Dead Sea Scrolls led to an appreciation of the Jewishness of John’s origin. Second, new approaches to John’s composition have emerged, followed by a larger set of inquiries as to the Johannine tradition’s relation to parallel traditions. This has been accompanied by a fourth interest: the history of the Johannine situation. Fifth, new literary studies have posed new horizons for interpretation, and sixth, theories continue to abound on the identity of the Beloved Disciple. A seventh development involves new ways of conceiving John’s theological features, leading to an eighth: reconsidering John’s historical features and re-envisioning its historical contributions in new perspective
The role of Allee effect in modelling post resection recurrence of glioblastoma
Resection of the bulk of a tumour often cannot eliminate all cancer cells, due to their infiltration into the surrounding healthy tissue. This may lead to recurrence of the tumour at a later time. We use a reaction-diffusion equation based model of tumour growth to investigate how the invasion front is delayed by resection, and how this depends on the density and behaviour of the remaining cancer cells. We show that the delay time is highly sensitive to qualitative details of the proliferation dynamics of the cancer cell population. The typically assumed logistic type proliferation leads to unrealistic results, predicting immediate recurrence. We find that in glioblastoma cell cultures the cell proliferation rate is an increasing function of the density at small cell densities. Our analysis suggests that cooperative behaviour of cancer cells, analogous to the Allee effect in ecology, can play a critical role in determining the time until tumour recurrence
- …