7 research outputs found

    A Reaction-Based Ratiometric Bioluminescent Platform for Point-of-Care and Quantitative Detection Using a Smartphone

    No full text
    Fluorescent probes have emerged as powerful tools for the detection of different analytes by virtue of structural tenability. However, the requirement of an excitation source largely hinders their applicability in point-of-care detection, as well as causing autofluorescence interference in complex samples. Herein, based on bioluminescence resonance energy transfer (BRET), we developed a reaction-based ratiometric bioluminescent platform, which allows the excitation-free detection of analytes. The platform has a modular design consisting of a NanoLuc-HaloTag fusion as an energy donor, to which a synthetic fluorescent probe is bioorthogonally labeled as recognition moiety and energy acceptor. Once activated by the target, the fluorescent probe can be excited by NanoLuc to generate a remarkable BRET signal, resulting in obvious color changes of luminescence, which can be easily recorded and quantitatively analyzed by a smartphone. As a proof of concept, a fluorescent probe for HOCl was synthesized to construct the bioluminescent system. Results demonstrated the system showed a constant blue/red emission ratio which is independent to the signal intensity, allowing the quantification of HOCl concentration with high sensitivity (limit of detection (LOD) = 13 nM) and accuracy. Given the universality, this reaction-based bioluminescent platform holds great potential for point-of-care and quantitative detection of reactive species

    Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits

    No full text
    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers’ attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity

    FRET Nanoflares for Intracellular mRNA Detection: Avoiding False Positive Signals and Minimizing Effects of System Fluctuations

    No full text
    A new class of intracellular nanoprobe, termed fluorescence resonance energy transfer (FRET) nanoflares, was developed to sense mRNA in living cells. It consists of a gold nanoparticle (AuNP), recognition sequences, and flares. Briefly, the AuNP functionalized with recognition sequences hybridized to flares, which are designed as hairpin structures and fluorescently labeled donors and acceptors at two ends, respectively. In the absence of targets, the flares are captured by binding with the recognition sequences, separating of the donor and acceptor, and inducing low FRET efficiency. However, in the presence of targets, the flares are gradually displaced from the recognition sequences by the targets, subsequently forming hairpin structures that bring the donor and acceptor into close proximity and result in high FRET efficiency. Compared to the conventional single-dye nanoflares, the upgraded FRET nanoflares can avoid false positive signals by chemical interferences (such as nuclease and GSH) and thermodynamic fluctuations. Moreover, the signal generation in FRET nanoflares can be easily made with ratiometric measurement, minimizing the effect of system fluctuations

    Aptazyme–Gold Nanoparticle Sensor for Amplified Molecular Probing in Living Cells

    No full text
    To date, a few of DNAzyme-based sensors have been successfully developed in living cells; however, the intracellular aptazyme sensor has remained underdeveloped. Here, the first aptazyme sensor for amplified molecular probing in living cells is developed. A gold nanoparticle (AuNP) is modified with substrate strands hybridized to aptazyme strands. Only the target molecule can activate the aptazyme and then cleave and release the fluorophore-labeled substrate strands from the AuNP, resulting in fluorescence enhancement. The process is repeated so that each copy of target can cleave multiplex fluorophore-labeled substrate strands, amplifying the fluorescence signal. Results show that the detection limit is about 200 nM, which is 2 or 3 orders of magnitude lower than that of the reported aptamer-based adenosine triphosphate (ATP) sensors used in living cells. Furthermore, it is demonstrated that the aptazyme sensor can readily enter living cells and realize intracellular target detection

    Ratiometric Fluorescent Sensing of pH Values in Living Cells by Dual-Fluorophore-Labeled i‑Motif Nanoprobes

    No full text
    We designed a new ratiometric fluorescent nanoprobe for sensing pH values in living cells. Briefly, the nanoprobe consists of a gold nanoparticle (AuNP), short single-stranded oligonucleotides, and dual-fluorophore-labeled i-motif sequences. The short oligonucleotides are designed to bind with the i-motif sequences and immobilized on the AuNP surface via Au–S bond. At neutral pH, the dual fluorophores are separated, resulting in very low fluorescence resonance energy transfer (FRET) efficiency. At acidic pH, the i-motif strands fold into a quadruplex structure and leave the AuNP, bringing the dual fluorophores into close proximity, resulting in high FRET efficiency, which could be used as a signal for pH sensing. The nanoprobe possesses abilities of cellular transfection, enzymatic protection, fast response and quantitative pH detection. The <i>in vitro</i> and intracellular applications of the nanoprobe were demonstrated, which showed excellent response in the physiological pH range. Furthermore, our experimental results suggested that the nanoprobe showed excellent spatial and temporal resolution in living cells. We think that the ratiometric sensing strategy could potentially be applied to create a variety of new multicolor sensors for intracellular detection

    Selection of Aptamers for Hydrophobic Drug Docetaxel To Improve Its Solubility

    No full text
    With the development of combinatorial chemistry and high-throughput screening, the number of hydrophobic drug candidates continues to increase. However, the low solubility of hydrophobic drugs could induce erratic absorption patterns and affect the drug efficacy. Aptamers are artificially selected highly water-soluble oligonucleotides that bind to ions, small molecules, proteins, living cells, and even tissues. Herein, to increase the solubility of hydrophobic drug, we screened the aptamer by exploiting DNA library immobilization selection strategy and microfluidic technology. The highly water-soluble aptamer might influence the dissolving capacity of its target. To demonstrate the concept, docetaxel (DOC), a second-generation taxoid cytotoxic with significant antitumor agent activity, was chosen as the model. It is generally known that the clinical application of docetaxel is limited greatly owing to its poor water solubility and serious side effects. After seven rounds of selection, two docetaxel-specific aptamers DOC6–5 and DOC7–38, were successfully obtained, and their apparent dissociation constants (<i>K</i><sub>d</sub>) were at nanomolar level. Then these two 100 mer ssDNA aptamers against docetaxel were truncated to 22 mer ones by utilizing the recognition domain. Moreover, the shorter aptamer exhibited higher binding affinity than 100 mer ssDNA aptamers. By adding the optimized aptamer, the solubility of docetaxel was increased from ∼14 μM to ∼145 μM, and the cytotoxicity of docetaxel did not reduce in the presence of aptamer. Therefore, the aptamer was used as a solubilizer to improve the solubility of hydrophobic drug (docetaxel) in aqueous phase. This strategy may also be extended to other hydrophobic drugs. Meanwhile, this work could also provide a useful tool for tumor targeting therapy by combining with cell target ligands
    corecore