9,376 research outputs found

    Spin Hall Effect in a Spinor Dipolar Bose-Einstein Condensate

    Get PDF
    We theoretically show that the spin Hall effect arises in a Bose-Einstein condensate (BEC) of neutral atoms interacting via the magnetic dipole-dipole interactions (MDDIs). Since the MDDI couples the total spin angular momentum and the relative orbital angular momentum of two colliding atoms, it works as a spin-orbit coupling. Thus, when we prepare a BEC in a magnetic sublevel m=0m=0, thermally and quantum-mechanically excited atoms in the m=1m=1 and 1-1 states feel the Lorentz-like foces in the opposite directions. This is the origin for the emergence of the the spin Hall effect. We define the mass-current and spin-current operators from the equations of continuity and calculate the spin Hall conductivity from the off-diagonal current-current correlation function within the Bogoliubov approximation. We find that the correction of the current operators due to the MDDI significantly contributes to the spin Hall conductivity. Possible experimental situation is also discussed.Comment: 11 pages, 6 figure

    Symmetry classification of spin-orbit coupled spinor Bose-Einstein condensates

    Full text link
    We develop a symmetry classification scheme to find ground states of pseudo spin-1/2, spin-1, and spin-2 spin-orbit coupled spinor Bose-Einstein condensates, and show that as the SO(2) symmetry of simultaneous spin and space rotations is broken into discrete cyclic groups, various types of lattice structures emerge in the absence of a lattice potential, examples include two different kagaome lattices for pseudo spin-1/2 condensates and a nematic vortex lattice in which uniaxial and biaxial spin textures align alternatively for spin-2 condensates. For the pseudo spin-1/2 system, although mean-field states always break time-reversal symmetry, there exists a time-reversal invariant many-body ground state, which is fragmented and expected to be observed in a micro-condensate.Comment: 9+ pages, 4 figure

    Inert-states of spin-5 and spin-6 Bose-Einstein condensates

    Full text link
    In this paper we consider spinor Bose-Einstein condensates with spin f=5 and f=6 in the presence and absence of external magnetic field at the mean field level. We calculate all of so-called inert-states of these systems. Inert-states are very unique class of stationary states because they remain stationary while Hamiltonian parameters change. Their existence comes from Michel's theorem. For illustration of symmetry properties of the inert-states we use method that allows classification of the systems as a polyhedron with 2f vertices proposed by R. Barnett et al., Phys. Rev. Lett. 97, 180412 (2006).Comment: 19 pages, 4 figure

    Quantum critical behavior in heavily doped LaFeAsO1x_{1-x}Hx_x pnictide superconductors analyzed using nuclear magnetic resonance

    Get PDF
    We studied the quantum critical behavior of the second antiferromagnetic (AF) phase in the heavily electron-doped high-TcT_c pnictide, LaFeAsO1x_{1-x}Hx_x by using 75^{75}As and 1^{1}H nuclear-magnetic-resonance (NMR) technique. In the second AF phase, we observed a spatially modulated spin-density-wave-like state up to xx=0.6 from the NMR spectral lineshape and detected a low-energy excitation gap from the nuclear relaxation time T1T_1 of 75^{75}As. The excitation gap closes at the AF quantum critical point (QCP) at x0.49x \approx 0.49. The superconducting (SC) phase in a lower-doping regime contacts the second AF phase only at the AF QCP, and both phases are segregated from each other. The absence of AF critical fluctuations and the enhancement of the in-plane electric anisotropy are key factors for the development of superconductivity.Comment: accepted in Phys. Rev.

    Friction, order, and transverse pinning of a two-dimensional elastic lattice under periodic and impurity potentials

    Full text link
    Frictional phenomena of two-dimensional elastic lattices are studied numerically based on a two-dimensional Frenkel-Kontorova model with impurities. It is shown that impurities can assist the depinning. We also investigate anisotropic ordering and transverse pinning effects of sliding lattices, which are characteristic of the moving Bragg glass state and/or transverse glass state. Peculiar velocity dependence of the transverse pinning is observed in the presence of both periodic and random potentials and discussed in the relation with growing order and discommensurate structures.Comment: RevTeX, 4 pages, 5 figures. to appear in Phys. Rev. B Rapid Commu
    corecore