10,430 research outputs found

    Spin Hall Effect in a Spinor Dipolar Bose-Einstein Condensate

    Get PDF
    We theoretically show that the spin Hall effect arises in a Bose-Einstein condensate (BEC) of neutral atoms interacting via the magnetic dipole-dipole interactions (MDDIs). Since the MDDI couples the total spin angular momentum and the relative orbital angular momentum of two colliding atoms, it works as a spin-orbit coupling. Thus, when we prepare a BEC in a magnetic sublevel m=0m=0, thermally and quantum-mechanically excited atoms in the m=1m=1 and −1-1 states feel the Lorentz-like foces in the opposite directions. This is the origin for the emergence of the the spin Hall effect. We define the mass-current and spin-current operators from the equations of continuity and calculate the spin Hall conductivity from the off-diagonal current-current correlation function within the Bogoliubov approximation. We find that the correction of the current operators due to the MDDI significantly contributes to the spin Hall conductivity. Possible experimental situation is also discussed.Comment: 11 pages, 6 figure

    Temporal 1/f^\alpha Fluctuations from Fractal Magnetic Fields in Black Hole Accretion Flow

    Full text link
    Rapid fluctuation with a frequency dependence of 1/fα1/f^{\alpha} (with α≃1−2\alpha \simeq 1 - 2) is characteristic of radiation from black-hole objects. Its origin remains poorly understood. We examine the three-dimensional magnetohydrodynamical (MHD) simulation data, finding that a magnetized accretion disk exhibits both 1/fα1/f^\alpha fluctuation (with α≃2\alpha \simeq 2) and a fractal magnetic structure (with the fractal dimension of D∌1.9D \sim 1.9). The fractal field configuration leads reconnection events with a variety of released energy and of duration, thereby producing 1/fα1/f^\alpha fluctuations.Comment: 5 pages, 4 figures. Accepted for publication in PASJ Letters, vol. 52 No.1 (Feb 2000

    The Largest Blueshifts of [O III] emission line in Two Narrow-Line Quasars

    Full text link
    We have obtained optical intermediate resolution spectra (R = 3000) of the narrow-line quasars DMS 0059-0055 and PG 1543+489. The [O III] emission line in DMS 0059-0055 is blueshifted by 880 km/s relative to Hbeta. We also confirm that the [O III] emission line in PG 1543+489 has a relative blueshift of 1150 km/s. These two narrow-line quasars show the largest [O III] blueshifts known to date among type 1 active galactic nuclei (AGNs). The [O III] emission lines in both objects are broad (1000 - 2000 km/s) and those in DMS 0059-0055 show strong blue asymmetry. We interpret the large blueshift and the profile of the [O III] lines as the result of an outflow interacting with circumnuclear gas. Among type 1 AGNs with large blueshifted [O III], there is no correlation between the Eddington ratios and the amount of [O III] blueshifts. Combining our new data with published results, we confirm that the Eddington ratios of the such AGNs are the highest among AGNs with the same black hole masses. These facts suggest that the Eddington ratio is a necessary condition or the [O III] blueshifts weakly depend on the Eddington ratio. Our new sample suggests that there are possible necessary conditions to produce an outflow besides a high Eddington ratio: large black hole mass (> 10^7 M_solar) or high mass accretion rate (> 2 M_solar/yr) or large luminosity (lambda L_{lambda} (5100A) > 10^44.6 erg/s).Comment: Accepted for publication in The Astrophysical Journa

    HIF-2α as a possible therapeutic target of osteoarthritis

    Get PDF
    SummaryObjectiveEndochondral ossification, a conversion process from nonvascularized and hypoxic cartilage to highly vascularized bone, plays a crucial role in osteoarthritis (OA) development as well as in physiological skeletal growth. We have shown that hypoxia-inducible factor-2α (HIF-2α, encoded by EPAS1) is an extensive regulator of the endochondal ossification process. Here we review the possible signaling network regulating OA development on the axis of HIF-2α.MethodsPeer reviewed publications published prior to August 2010 were searched in the Pubmed database. Articles that were relevant to HIF and molecular mechanisms of the endochondral ossification and OA were selected.ResultsAs a trigger of OA, mechanical stress may induce the upstream NF-ÎșB signal and HIF-2α expression in joint cartilage of mice and humans, which causes transactivation of endochondral ossification-related molecules with the most potent ÎČ-subunit partner aryl hydrocarbon nuclear translocator-like (ARNTL). In contrast to HIF-2α, HIF-1α functions to maintain cartilage via a distinct mechanism, so that the shifting of the HIFs might possibly be involved in an OA pathogenesis.ConclusionSignals on the HIF-2α axis from NF-ÎșB signaling to the endochondral ossification-related molecules, possibly in combination with HIF-2α and ARNTL, may represent a rational therapeutic target for OA with minimal effects on physiological skeletal homeostasis
    • 

    corecore