43 research outputs found

    Codensity Lifting of Monads and its Dual

    Full text link
    We introduce a method to lift monads on the base category of a fibration to its total category. This method, which we call codensity lifting, is applicable to various fibrations which were not supported by its precursor, categorical TT-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preorders, topological spaces and extended pseudometric spaces to the category of sets, and also the fibration from the category of binary relations between measurable spaces. We also introduce the dual method called density lifting of comonads. We next study the liftings of algebraic operations to the codensity liftings of monads. We also give a characterisation of the class of liftings of monads along posetal fibrations with fibred small meets as a limit of a certain large diagram.Comment: Extended version of the paper presented at CALCO 2015, accepted for publication in LMC

    Codensity Liftings of Monads

    Get PDF
    We introduce a method to lift monads on the base category of a fibration to its total category using codensity monads. This method, called codensity lifting, is applicable to various fibrations which were not supported by the categorical >>-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preorders, topological spaces and extended psuedometric spaces to the category of sets, and also the fibration from the category of binary relations between measurable spaces. We next study the liftings of algebraic operations to the codensity-lifted monads. We also give a characterisation of the class of liftings (along posetal fibrations with fibred small limits) as a limit of a certain large diagram

    A Coalgebraic View on Reachability

    Full text link
    Coalgebras for an endofunctor provide a category-theoretic framework for modeling a wide range of state-based systems of various types. We provide an iterative construction of the reachable part of a given pointed coalgebra that is inspired by and resembles the standard breadth-first search procedure to compute the reachable part of a graph. We also study coalgebras in Kleisli categories: for a functor extending a functor on the base category, we show that the reachable part of a given pointed coalgebra can be computed in that base category

    Divergences on Monads for Relational Program Logics

    Full text link
    Several relational program logics have been introduced for integrating reasoning about relational properties of programs and measurement of quantitative difference between computational effects. Towards a general framework for such logics, in this paper, we formalize quantitative difference between computational effects as divergence on monad, then develop a relational program logic acRL that supports generic computational effects and divergences on them. To give a categorical semantics of acRL supporting divergences, we give a method to obtain graded strong relational liftings from divergences on monads. We derive two instantiations of acRL for the verification of 1) various differential privacy of higher-order functional probabilistic programs and 2) difference of distribution of costs between higher-order functional programs with probabilistic choice and cost counting operations.Comment: Preprin

    A Generalisation of Pre-Logical Predicates and Its Applications

    Get PDF
    This thesis proposes a generalisation of pre-logical predicates to simply typed formal systems and their categorical models. We analyse the three elements involved in pre-logical predicates --- syntax, semantics and predicates --- within a categorical framework for typed binding syntax and semantics. We then formulate generalised pre-logical predicates and show two distinguishing properties: a) equivalence with the basic lemma and b) closure of binary pre-logical relations under relational composition. To test the adequacy of this generalisation, we derive pre-logical predicates for various calculi and their categorical models including variations of lambda calculi and non-lambda calculi such as many-sorted algebras as well as first-order logic. We then apply generalised pre-logical predicates to characterising behavioural equivalence. Examples of constructive data refinement of typed formal systems are shown, where behavioural equivalence plays a crucial role in achieving data abstraction

    Fibrational Initial Algebra-Final Coalgebra Coincidence over Initial Algebras: Turning Verification Witnesses Upside Down

    Get PDF
    The coincidence between initial algebras (IAs) and final coalgebras (FCs) is a phenomenon that underpins various important results in theoretical computer science. In this paper, we identify a general fibrational condition for the IA-FC coincidence, namely in the fiber over an initial algebra in the base category. Identifying (co)algebras in a fiber as (co)inductive predicates, our fibrational IA-FC coincidence allows one to use coinductive witnesses (such as invariants) for verifying inductive properties (such as liveness). Our general fibrational theory features the technical condition of stability of chain colimits; we extend the framework to the presence of a monadic effect, too, restricting to fibrations of complete lattice-valued predicates. Practical benefits of our categorical theory are exemplified by new "upside-down" witness notions for three verification problems: probabilistic liveness, and acceptance and model-checking with respect to bottom-up tree automata

    Fully abstract models for effectful λ-calculi via category-theoretic logical relations

    Get PDF
    We present a construction which, under suitable assumptions, takes a model of Moggi’s computational λ-calculus with sum types, effect operations and primitives, and yields a model that is adequate and fully abstract. The construction, which uses the theory of fibrations, categorical glueing, ⊤⊤-lifting, and ⊤⊤-closure, takes inspiration from O’Hearn & Riecke’s fully abstract model for PCF. Our construction can be applied in the category of sets and functions, as well as the category of diffeological spaces and smooth maps and the category of quasi-Borel spaces, which have been studied as semantics for differentiable and probabilistic programming

    A Categorical Framework for Program Semantics and Semantic Abstraction

    Full text link
    Categorical semantics of type theories are often characterized as structure-preserving functors. This is because in category theory both the syntax and the domain of interpretation are uniformly treated as structured categories, so that we can express interpretations as structure-preserving functors between them. This mathematical characterization of semantics makes it convenient to manipulate and to reason about relationships between interpretations. Motivated by this success of functorial semantics, we address the question of finding a functorial analogue in abstract interpretation, a general framework for comparing semantics, so that we can bring similar benefits of functorial semantics to semantic abstractions used in abstract interpretation. Major differences concern the notion of interpretation that is being considered. Indeed, conventional semantics are value-based whereas abstract interpretation typically deals with more complex properties. In this paper, we propose a functorial approach to abstract interpretation and study associated fundamental concepts therein. In our approach, interpretations are expressed as oplax functors in the category of posets, and abstraction relations between interpretations are expressed as lax natural transformations representing concretizations. We present examples of these formal concepts from monadic semantics of programming languages and discuss soundness.Comment: MFPS 202
    corecore