2 research outputs found

    Suitability of commercial superplasticizers for one-part alkali-activated blast-furnace slag mortar

    No full text
    Alkali-activated materials are a low-CO2 alternative for Portland cement in construction. However, one major issue in their use is the poor or varying functionality of the currently available commercial superplasticizers. Especially for one-part (‘just add water’) alkali-activated materials, the number of studies is limited. In this study, one-part alkali-activated mortar was prepared from blast furnace slag by using solid sodium hydroxide as an activator and microsilica as an additional silica source. Comparison of commonly used superplasticizer types revealed that lignosulfonate, melamine, and naphthalene-based superplasticizers are more efficient than the currently most used polyacrylate and polycarboxylate-superplasticizers. Lignosulfonate-based superplasticizer was overall best-performing: it improved significantly the workability (+41% spread, −51% yield stress, −27% viscosity), setting time (+70%), and compressive strength (+19%) at a 0.5 wt% dose. When the amount of water and superplasticizer were optimized, compressive strength of mortar could be doubled (from 19 to 40 MPa at 28 d).</p

    High-Strength Nanocellulose–Talc Hybrid Barrier Films

    No full text
    Hybrid organic–inorganic films mimicking natural nacre-like composite structures were fabricated from cellulose nanofibers obtained from sequential periodate–chlorite oxidation treatment and talc platelets, using a simple vacuum-filtration method. As a pretreatment, commercial talc aggregates were individualized into well-dispersed talc platelets using a wet stirred media mill with high-shear conditions to promote the homogeneity and mechanical characteristics of hybrids. The nanofiber–talc hybrids, which had talc contents from 1 to 50 wt %, were all flexible in bending, and possessed tensile strength and Young’s modulus values up to 211 ± 3 MPa and 12 ± 1 GPa, respectively, the values being remarkably higher than those reported previously for nanofibrillated cellulose–talc films. Because of the lamellar and well-organized structure of hybrids in which the talc platelets were evenly embedded, they possessed a small pore size and good oxygen barrier properties, as indicated by the preliminary results. The talc platelets decreased the moisture adsorption of highly talc-loaded hybrids, although they still exhibited hydrophilic surface characteristics in terms of contact angles
    corecore