272 research outputs found

    TASI 2009 Lectures: Searching for Unexpected Physics at the LHC

    Get PDF
    These TASI lectures consider low mass hidden sectors from Hidden Valleys, Quirks and Unparticles. We show how each corresponds to a different limit of the same class of models: hidden sectors with non-abelian gauge groups with mass gaps well below a TeV that communicate to the Standard Model through weak scale suppressed higher dimension operators. We provide concrete examples of such models and discuss LHC signatures. Lastly we turn to discussing the application of Hidden Valleys to dark matter sectors.Comment: 35 pages, 21 figure

    Multi-Component Dark Matter

    Get PDF
    We explore multi-component dark matter models where the dark sector consists of multiple stable states with different mass scales, and dark forces coupling these states further enrich the dynamics. The multi-component nature of the dark matter naturally arises in supersymmetric models, where both R parity and an additional symmetry, such as a Z2Z_2, is preserved. We focus on a particular model where the heavier component of dark matter carries lepton number and annihilates mostly to leptons. The heavier component, which is essentially a sterile neutrino, naturally explains the PAMELA, ATIC and synchrotron signals, without an excess in antiprotons which typically mars other models of weak scale dark matter. The lighter component, which may have a mass from a GeV to a TeV, may explain the DAMA signal, and may be visible in low threshold runs of CDMS and XENON, which search for light dark matter.Comment: 4 pages, no figures. v2: paper shortened to letter length; modified dark matter spectru

    Spacetime Fluctuations in AdS/CFT

    Get PDF
    We compute fluctuations in the modular energy of the vacuum associated with a Rindler-wedge in AdS spacetime in the context of AdS/CFT. We discuss the possible effect of these energy fluctuations on the spacetime geometry, and on the traversal time of a light beam propagating from the boundary to the bulk and back.Comment: 25 pages, 1 figur

    A Natural Supersymmetric Model with MeV Dark Matter

    Get PDF
    It has previously been proposed that annihilating dark matter particles with MeV-scale masses could be responsible for the flux of 511 keV photons observed from the region of the Galactic Bulge. The conventional wisdom, however, is that it is very challenging to construct a viable particle physics model containing MeV dark matter. In this letter, we challenge this conclusion by describing a simple and natural supersymmetric model in which the lightest supersymmetric particle naturally has a MeV-scale mass and the other phenomenological properties required to generate the 511 keV emission. In particular, the small (∼\sim 10βˆ’510^{-5}) effective couplings between dark matter and the Standard Model fermions required in this scenario naturally lead to radiative corrections that generate MeV-scale masses for both the dark matter candidate and the mediator particle.Comment: 4 pages, 1 figure. v2: Small modification to discussion of spectru

    Indirect Detection Signatures for the Origin of Asymmetric Dark Matter

    Get PDF
    We study the decay signatures of Asymmetric Dark Matter (ADM) via higher dimension operators which are responsible for generating the primordial dark matter (DM) asymmetry. Since the signatures are sensitive both to the nature of the higher dimension operator generating the DM asymmetry and to the sign of the baryon or lepton number that the DM carries, indirect detection may provide a window into the nature of the mechanism which generates the DM asymmetry. We consider in particular dimension-6 fermionic operators of the form OADM=XOBβˆ’L/M2{\cal O}_{ADM} = X {\cal O}_{B-L}/M^2, where OBβˆ’L=ucdcdc,Β β„“β„“ec,Β qβ„“dc{\cal O}_{B-L} = u^c d^c d^c,~\ell \ell e^c,~q \ell d^c (or operators related through a Hermitian conjugate) with the scale MM around or just below the GUT scale. We derive constraints on ADM particles both in the natural mass range (around a few GeV), as well as in the range between 100 GeV to 10 TeV. For light ADM, we focus on constraints from both the low energy gamma ray data and proton/anti-proton fluxes. For heavy ADM, we consider Ξ³\gamma-rays and proton/anti-proton fluxes, and we fit e+/eβˆ’e^+/e^- data from AMS-02 and H.E.S.S. (neglecting the Fermi charged particle fluxes which disagree with AMS-02 below 100 GeV). We show that, although the best fit regions from electron/positron measurement are still in tension with other channels on account of the H.E.S.S. measurement at high energies, compared to an ordinary symmetric dark matter scenario, the decay of DM with a primordial asymmetry reduces the tension. Better measurement of the flux at high energy will be necessary to draw a definite conclusion about the viability of decaying DM as source for the signals.Comment: Constraint from H.E.S.S. for heavy ADM scenario is included. Constraint from anti-proton flux for light ADM scenario is included. Matched to the version of publicatio

    Observational Signatures of Quantum Gravity in Interferometers

    Get PDF
    We consider the uncertainty in the arm length of an interferometer due to metric fluctuations from the quantum nature of gravity, proposing a concrete microscopic model of energy fluctuations in holographic degrees of freedom on the surface bounding a causally connected region of spacetime. In our model, fluctuations longitudinal to the beam direction accumulate in the infrared and feature strong long distance correlation in the transverse direction. This leads to a signal that could be observed in a gravitational wave interferometer. We connect the positional uncertainty principle arising from our calculations to the 't Hooft gravitational S-matrix.Comment: 6 pages, 1 figur

    On the Effect of Nuclear Response Functions in Dark Matter Direct Detection

    Get PDF
    We examine the effect of nuclear response functions, as laid out in [Fitzpatrick et al, arXiv:1203.3542], on dark matter (DM) direct detection in the context of well-motivated UV completions, including electric and magnetic dipoles, anapole, spin-orbit, and pseudoscalar-mediated DM. Together, these encompass five of the six nuclear responses extracted from the non-relativistic effective theory of [Fitzpatrick et al, arXiv:1203.3542] (with the sixth difficult to UV complete), with two of the six combinations corresponding to standard spin-independent and -dependent responses. For constraints from existing direct detection experiments, we find that only the COUPP constraint, due to its heavy iodine target with large angular momentum and an unpaired spin, and its large energy range sensitivity, is substantially modified by the new responses compared to what would be inferred using the standard form factors to model the energy dependence of the response. For heavy targets such as xenon and germanium, the behavior of the new nuclear responses as recoil energy increases can be substantially different than that of the standard responses, but this has almost no impact on the constraints derived from experiments such as LUX, XENON100 and CDMS since the maximum nuclear recoil energy detected in these experiments is relatively low. We simulate mock data for 80 and 250 GeV DM candidates utilizing the new nuclear responses to highlight how they might affect a putative signal, and find the new responses are most important for momentum-suppressed interactions such as the magnetic dipole or pseudoscalar-mediated interaction when the target is relatively heavy (such as xenon and iodine).Comment: 42 pages, 12 figures, 5 table
    • …
    corecore