10 research outputs found

    Typical Phone Use Habits: Intense Use Does Not Predict Negative Well-Being

    Full text link
    Not all smartphone owners use their device in the same way. In this work, we uncover broad, latent patterns of mobile phone use behavior. We conducted a study where, via a dedicated logging app, we collected daily mobile phone activity data from a sample of 340 participants for a period of four weeks. Through an unsupervised learning approach and a methodologically rigorous analysis, we reveal five generic phone use profiles which describe at least 10% of the participants each: limited use, business use, power use, and personality- & externally induced problematic use. We provide evidence that intense mobile phone use alone does not predict negative well-being. Instead, our approach automatically revealed two groups with tendencies for lower well-being, which are characterized by nightly phone use sessions.Comment: 10 pages, 6 figures, conference pape

    Analysing Crowd Behaviours using Mobile Sensing

    Get PDF
    PhDResearchers have examined crowd behaviour in the past by employing a variety of methods including ethnographic studies, computer vision techniques and manual annotation-based data analysis. However, because of the resources to collect, process and analyse data, it remains difficult to obtain large data sets for study. Mobile phones offer easier means for data collection that is easy to analyse and can preserve the user’s privacy. The aim of this thesis is to identify and model different qualities of social interactions inside crowds using mobile sensing technology. This Ph.D. research makes three main contributions centred around the mobile sensing and crowd sensing area. Firstly, an open-source licensed mobile sensing framework is developed, named SensingKit, that is capable of collecting mobile sensor data from iOS and Android devices, supporting most sensors available in modern smartphones. The framework has been evaluated in a case study that investigates the pedestrian gait synchronisation phenomenon. Secondly, a novel algorithm based on graph theory is proposed capable of detecting stationary social interactions within crowds. It uses sensor data available in a modern smartphone device, such as the Bluetooth Smart (BLE) sensor, as an indication of user proximity, and accelerometer sensor, as an indication of each user’s motion state. Finally, a machine learning model is introduced that uses multi-modal mobile sensor data extracted from Bluetooth Smart, accelerometer and gyroscope sensors. The validation was performed using a relatively large dataset with 24 participants, where they were asked to socialise with each other for 45 minutes. By using supervised machine learning based on gradient-boosted trees, a performance increase of 26.7% was achieved over a proximity-based approach. Such model can be beneficial to the design and implementation of in-the-wild crowd behavioural analysis, design of influence strategies, and algorithms for crowd reconfiguration.UK Defence Science & Technology Laboratory (DSTL

    BatteryLab, A Distributed Power Monitoring Platform For Mobile Devices

    Full text link
    Recent advances in cloud computing have simplified the way that both software development and testing are performed. Unfortunately, this is not true for battery testing for which state of the art test-beds simply consist of one phone attached to a power meter. These test-beds have limited resources, access, and are overall hard to maintain; for these reasons, they often sit idle with no experiment to run. In this paper, we propose to share existing battery testing setups and build BatteryLab, a distributed platform for battery measurements. Our vision is to transform independent battery testing setups into vantage points of a planetary-scale measurement platform offering heterogeneous devices and testing conditions. In the paper, we design and deploy a combination of hardware and software solutions to enable BatteryLab's vision. We then preliminarily evaluate BatteryLab's accuracy of battery reporting, along with some system benchmarking. We also demonstrate how BatteryLab can be used by researchers to investigate a simple research question.Comment: 8 pages, 8 figures, HotNets 2019 pape

    The potential of wearable technology for monitoring social interactions based on interpersonal synchrony

    Get PDF
    Sensing data from wearables have been extensively evaluated for fitness tracking, health monitoring or rehabilitation of individuals. However, we believe that wearable sensing can go beyond the individual and offer insights into social dynamics and interactions with other users by considering multi-user data. In this work, we present a new approach to using wrist-worn wearables for social monitoring and the detection of social interaction features based on interpersonal synchrony - an approach transferable to smartwatches and fitness trackers. We build up on related work in the field of psychology and present a study where we collected wearable sensing data during a social event with 24 participants. Our preliminary results indicate differences in wearable sensing data during a social interaction between two people

    A PIMS Development Kit for New Personal Data Platforms

    Get PDF
    The web ecosystem is based on a market where stakeholders collect and sell personal data, but nowadays users expect stronger guarantees of transparency and privacy. With the PIMCity personal information management system (PIMS) development kit, we provide an open-source development kit for building PIMSs to foster the development of open and user-centric data markets
    corecore