6 research outputs found

    Nodal Count Asymptotics for Separable Geometries

    Get PDF

    Asymptotic Solutions of the Phase Space Schrodinger Equation: Anisotropic Gaussian Approximation

    Get PDF
    We consider the singular semiclassical initial value problem for the phase space Schrodinger equation. We approximate semiclassical quantum evolution in phase space by analyzing initial states as superpositions of Gaussian wave packets and applying individually semiclassical anisotropic Gaussian wave packet dynamics, which is based on the the nearby orbit approximation; we accordingly construct a semiclassical approximation of the phase space propagator, semiclassical wave packet propagator, which admits WKBM semiclassical states as initial data. By the semiclassical propagator we construct asymptotic solutions of the phase space Schrodinger equation, noting the connection of this construction to the initial value repsresentations for the Schrodinger equation

    Can one count the shape of a drum?

    Get PDF
    Sequences of nodal counts store information on the geometry (metric) of the domain where the wave equation is considered. To demonstrate this statement, we consider the eigenfunctions of the Laplace-Beltrami operator on surfaces of revolution. Arranging the wave functions by increasing values of the eigenvalues, and counting the number of their nodal domains, we obtain the nodal sequence whose properties we study. This sequence is expressed as a trace formula, which consists of a smooth (Weyl-like) part which depends on global geometrical parameters, and a fluctuating part which involves the classical periodic orbits on the torus and their actions (lengths). The geometrical content of the nodal sequence is thus explicitly revealed.Comment: 4 pages, 1 figur

    Counting nodal domains on surfaces of revolution

    Full text link
    We consider eigenfunctions of the Laplace-Beltrami operator on special surfaces of revolution. For this separable system, the nodal domains of the (real) eigenfunctions form a checker-board pattern, and their number νn\nu_n is proportional to the product of the angular and the "surface" quantum numbers. Arranging the wave functions by increasing values of the Laplace-Beltrami spectrum, we obtain the nodal sequence, whose statistical properties we study. In particular we investigate the distribution of the normalized counts νnn\frac{\nu_n}{n} for sequences of eigenfunctions with K≤n≤K+ΔKK \le n\le K + \Delta K where K,ΔK∈NK,\Delta K \in \mathbb{N}. We show that the distribution approaches a limit as K,ΔK→∞K,\Delta K\to\infty (the classical limit), and study the leading corrections in the semi-classical limit. With this information, we derive the central result of this work: the nodal sequence of a mirror-symmetric surface is sufficient to uniquely determine its shape (modulo scaling).Comment: 36 pages, 8 figure
    corecore