1,237 research outputs found

    Photocatalytic degradation of ketorolac tromethamine (KTC) drug in aqueous phase using prepared Ag-doped ZnO microplates

    Get PDF
    In this study, Ag-doped ZnO microplates were prepared via precipitation technique and further characterized by FESEM, EDS, XRD, FTIR, TGA, XPS, UV-DRS and RT-PL techniques. The outcomes indicated that Ag+ ions were well incorporated into ZnO lattice leading to the absorption of ZnO in visible region as well as effective charge separation. The photocatalytic experiments showed that Ag-doped ZnO microplates show higher catalytic activity (91%) than bare ZnO (71%) for the degradation of KTC drug under solar illumination. The photocatalytic degradation of KTC drug over Ag doped ZnO microplates obeyed pseudo first-order kinetics model. Also, the role of active species was examined by the addition of several scavengers in the photocatalytic degradation system. The results indicated that h+, •OHs, 1O2 and •OH were considered as prime reactive species in photocatalytic degradation process

    Bi2WO6/C-dots/TiO2: A novel z-scheme photocatalyst for the degradation of fluoroquinolone levofloxacin from aqueous medium

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Photocatalytic materials and semiconductors of appropriate structural and morphological architectures as well as energy band gaps are materials needed for mitigating current environmental problems, as these materials have the ability to exploit the full spectrum of solar light in several applications. Thus, constructing a Z-scheme heterojunction is an ideal approach to overcoming the limitations of a single component or traditional heterogeneous catalysts for the competent removal of organic chemicals present in wastewater, to mention just one of the areas of application. A Z-scheme catalyst possesses many attributes, including enhanced light-harvesting capacity, strong redox ability and different oxidation and reduction positions. In the present work, a novel ternary Z-scheme photocatalyst, i.e., Bi2WO6/C-dots/TiO2, has been prepared by a facile chemical wet technique. The prepared solar light-driven Z-scheme composite was characterized by many analytical and spectroscopic practices, including powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), N2 adsorption–desorption isotherm, Fourier-transform infrared spectroscopy (FT-IR), photoluminescence (PL) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the Bi2WO6/C-dots/TiO2 composite was evaluated by studying the degradation of fluoroquinolone drug, levofloxacin under solar light irradiation. Almost complete (99%) decomposition of the levofloxacin drug was observed in 90 min of sunlight irradiation. The effect of catalyst loading, initial substrate concentration and pH of the reaction was also optimized. The photocatalytic activity of the prepared catalyst was also compared with that of bare Bi2WO6, TiO2 and TiO2/C-dots under optimized conditions. Scavenger radical trap studies and terephthalic acid (TPA) fluorescence technique were done to understand the role of the photo-induced active radical ions that witnessed the decomposition of levofloxacin. Based on these studies, the plausible degradation trail of levofloxacin was proposed and was further supported by LC-MS analysis

    Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.materresbull.2018.07.025 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Herein, we report the synthesis, characterization and enhanced adsorption studies of porous octahedral shaped Cu-BTC (copper benzene-1,3,5-tricarboxylate) metal organic frameworks (MOFs). The Cu-BTC MOFs were synthesized by facile hydrothermal process and characterized by various techniques in order to examine the structural, morphological, thermal and adsorption-desorption properties. The synthesized Cu-BTC MOFs were used as potential scaffold for the adsorption of highly toxic azo dye, i.e. methylene blue (MB). Detailed absorption studies on the effect of initial pH, concentration, reaction time and temperature on adsorption of MB were analysed and it was observed that the removal of MB followed pseudo-2nd order kinetic model. Freundlich model fitted well as compared to Langmuir model with R2 of 0.975 and thereby signifying a multilayer adsorption of MB on the surface of Cu-BTC MOFs. The observed maximal adsorption capacity for MB removal (200 mg/L) was ∼101.21 mg/g using Langmuir isotherm. The Cu-BTC MOFs exhibited 42.3 mg/g adsorption capacity after fourth cycle of MB dye adsorption. These features exhibited that Cu-BTC MOF have potential for the adsorption of MB and can efficiently be used to treat wastewater.Université Paul Cézanne - Aix-Marseille IIICSIR/SRF Fellowship/2016CSIR New Delhi ["09/135/0750/EMR-I"

    Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye

    Get PDF
    In the present work, a novel triptycene-based imine-linked covalent organic polymer (TP-COP) was designed and synthesized via room-temperature, solvent-free mechanochemical grinding. The as-synthesized TP-COP material was fully characterized by Fourier transform infrared spectroscopy, solid-state NMR, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller method, thermogravimetric analysis, diffuse reflectance spectroscopy (DRS), and electron paramagnetic resonance (EPR). The HRTEM image of TP-COP clearly indicates the presence of graphene-like layered morphology (exfoliated layers). The DRS study reveals that TP-COP exhibited a low optical band gap value of 2.49 eV, implying its semiconducting nature. Further, the EPR study confirmed the semiconducting behavior of TP-COP through the generation of free radicals. These findings suggest that TP-COP could be used as an efficient photocatayst for the degradation of organic dye (RhB) under solar irradiation. Moreover, TP-COP showed excellent reusability in degrading dye (RhB) without obvious performance decay

    Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye

    Get PDF
    In the present work, a novel triptycene-based imine-linked covalent organic polymer (TP-COP) was designed and synthesized via room-temperature, solvent-free mechanochemical grinding. The as-synthesized TP-COP material was fully characterized by Fourier transform infrared spectroscopy, solid-state NMR, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller method, thermogravimetric analysis, diffuse reflectance spectroscopy (DRS), and electron paramagnetic resonance (EPR). The HRTEM image of TP-COP clearly indicates the presence of graphene-like layered morphology (exfoliated layers). The DRS study reveals that TP-COP exhibited a low optical band gap value of 2.49 eV, implying its semiconducting nature. Further, the EPR study confirmed the semiconducting behavior of TP-COP through the generation of free radicals. These findings suggest that TP-COP could be used as an efficient photocatayst for the degradation of organic dye (RhB) under solar irradiation. Moreover, TP-COP showed excellent reusability in degrading dye (RhB) without obvious performance decay

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV
    corecore