151 research outputs found
Puustobiomassan kartoituksen ja seurannan kehittäminen
Tieteen tori: Luonnonvarariskien hallint
Laserkeilaus puutason biomassan, puutavaralajien sekä laatutiedon ennustamisessa
The precise knowledge of forest structural attributes play an essential role in decision-making, forest management procedure planning and in wood supply chain optimization. Laser scanning (LS) is one of the most promising remote sensing techniques, which can be used to estimate forest attributes at all levels, from single trees to global applications. The main objectives of the present thesis were to develop LS-based methodologies for mapping and measuring single trees. More specifically, new high-density LS-based models and methodologies were developed for the prediction of aboveground biomass (AGB), logging recovery, stem curve and external tree quality estimation. Multisource remote sensing methodologies were additionally introduced for the detailed next generation forest-inventory process.
Substudies I and II concentrated on developing LS-based biomass models. Total AGB was estimated with the relative root mean squared errors (RMSE%) of 12.9% and 11.9% for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H.Karst.), respectively using terrestrial LS (TLS) -derived predictors in multiple regression modelling. TLS-based AGB models significantly improved the estimation accuracy of AGB components compared to state-of-the-art allometric biomass models. Airborne LS (ALS) resulted in slightly higher RMSE% values of 26.3% and 36.8% for Scots pine and Norway spruce compared to results obtained with TLS.
The goal of substudies III and IV was to predict timber assortment and tree quality information using high-density LS data. Sawlog volumes were estimated with RMSE% of 17.5% and 16.8% with TLS and a combination of TLS and ALS, respectively. Results in IV showed that trees could be successfully classified in different quality classes based on TLS-measured attributes with accuracies between 76.4% and 83.6% depending on the amount of quality classes.
Substudies V and VI presented new automatic processing tools for TLS data and a multisource approach for the more detailed prediction of diameter distribution. Automatic processing of TLS data was demonstrated to be effective and accurate and could be utilized to make future TLS measurements more efficient. Accuracies of ~1 cm were achieved using the automatic stem curve procedure. The multisource single-tree inventory approach combined accurate treemaps produced automatically from the TLS data, and ALS individual tree detection technique. Results from diverse forest conditions were promising, resulting in diameter prediction accuracies between 1.4 cm and 4.7 cm depending on tree density and main tree species. Each substudy (I VI) presented new methods and results for single-tree AGB modelling, external tree quality classification, automatic stem reconstruction and multisource approaches.Yksityiskohtainen metsävaratieto on merkittävässä roolissa metsänomistajien päätöksenteon, metsänhoidon suunnittelun sekä puunhankintaketjun optimoinnin tukena. Laserkeilaus on yksi lupaavimmista kaukokartoitustekniikoista, jolla on mahdollista ennustaa metsävaratietoa yksittäisen puun tasolta laajoihin alueisiin. Väitöskirjatyön päätavoitteina oli kehittää laserkeilauspohjaisia menetelmiä yksittäisten puiden kartoitukseen ja mittaukseen.
Osajulkaisuissa I ja II selvitettiin laserkeilausmenetelmien tarkkuutta puutason biomassaositteiden mallinnuksessa. Kokonaisbiomassan mallinnustarkkuus maastolaserkeilaukseen perustuen oli männylle 12,9 % ja kuuselle 11,9 %. Maastolaserkeilauksen hyödyntäminen biomassan mallintamisessa tarkensi erityisesti latvusbiomassan mallinnustarkkuutta verrattuna läpimittaan ja pituuteen perustuviin biomassamalleihin. Lentolaserkeilauksen tarkkuudet olivat hieman heikompia verrattuna maastolaserkeilaukseen. Kokonaisbiomassan tarkkuudet olivat männylle 26,3 % ja kuuselle 36,8 %.
Osajulkaisuissa III ja IV tavoitteena oli ennustaa puutavaralajikohtaisia tilavuuksia sekä laatutietoa maastolaserkeilauksen ja lentolaserkeilauksen avulla. Tukkipuun tilavuuden ennustetarkkuudet olivat maastolaserkeilausta käytettäessä 17,5 % ja maasto- ja lentolaserkeilauksen yhdistelmää käytettäessä 16,8 %. Puuston laatu on erittäin tärkeä tekijä metsikköä arvioitaessa. Maastolaserkeilauksen avulla yksittäiset puut luokiteltiin puunhankinnan kannalta tärkeisiin laatuluokkiin 76,4 % 83,6 % tarkkuudella.
Osajulkaisuissa V ja VI tavoitteena oli kehittää uusia automaattisia menetelmiä maastolaserkeilausaineiston käsittelyyn, sekä monilähdemenetelmiä läpimittajakauman ennustamiseen. Automaattisten menetelmien avulla maastolaserkeilausaineiston käsittelyä on mahdollista tehostaa ja jopa tarkentaa manuaaliseen aineiston käsittelyyn verrattuna. Osajulkaisussa V runkokäyrän mittaustarkkuus oli automaattista aineistonkäsittelymenetelmää käytettäessä ~ 1 cm. Osajulkaisussa VI hyödynnettiin monilähdemenetelmää, jossa tarvittu puukartta mitattiin automaattisesti maastolaserkeilausaineistosta ja läpimittajakaumat ennustettiin maasto- ja lentolaserkeilausaineistojen avulla. Läpimitan ennustetarkkuus oli 1,4 cm ja 4,7 cm välillä puustoltaan hyvin vaihtelevissa metsiköissä.
Väitöskirjatyön osajulkaisuissa kehitetyt menetelmät ja esitetyt tulokset osoittivat laserkeilausmenetelmien olevan varteenotettava vaihtoehto yksittäisten puiden kartoitukselle ja mittaamiselle tulevaisuudessa
Comparison of Terrestrial Laser Scanning and X-ray Scanning in Measuring Scots Pine (Pinus sylvestris L.) Branch Structure
While X-ray scanning is increasingly used to measure the interior quality of logs, terrestrial laser scanning (TLS) could be used to collect information on external tree characteristics. As branches are one key indicator of wood quality, we compared TLS and X-ray scanning data in deriving whorl locations and each whorl's maximum branch and knot diameters for 162 Scots pine (Pinus sylvestris L.) log sections. The mean number of identified whorls per tree was 37.25 and 22.93 using X-ray and TLS data, respectively. The lowest TLS-derived whorl in each sample tree was an average 5.56 m higher than that of the X-ray data. Whorl-to-whorl mean distances and the means of the maximum branch and knot diameters in a whorl measured for each sample tree using TLS and X-ray data had mean differences of -0.12 m and -6.5 mm, respectively. One of the most utilized wood quality indicators, tree-specific maximum knot diameter measured by X-ray, had no statistically significant difference to the tree-specific maximum branch diameter measured from the TLS point cloud. It appears challenging to directly derive comparative branch structure information using TLS and X-ray. However, some features that are extractable from TLS point clouds are potential wood quality indicators.Peer reviewe
Retrieval of Forest Aboveground Biomass and Stem Volume with Airborne Scanning LiDAR
Airborne scanning LiDAR is a promising technique for efficient and accuratebiomass mapping due to its capacity for direct measurement of the three-dimensionalstructure of vegetation. A combination of individual tree detection (ITD) and an area-basedapproach (ABA) introduced in Vastaranta et al. [1] to map forest aboveground biomass(AGB) and stem volume (VOL) was investigated. The main objective of this study was totest the usability and accuracy of LiDAR in biomass mapping. The nearest neighbourmethod was used in the ABA imputations and the accuracy of the biomass estimation wasevaluated in the Finland, where single tree-level biomass models are available. The relativeroot-mean-squared errors (RMSEs) in plot-level AGB and VOL imputation were 24.9%and 26.4% when field measurements were used in training the ABA. When ITDmeasurements were used in training, the respective accuracies ranged between 28.5%–34.9%and 29.2%–34.0%. Overall, the results show that accurate plot-level AGB estimates can beachieved with the ABA. The reduction of bias in ABA estimates in AGB and VOL wasencouraging when visually corrected ITD (ITDvisual) was used in training. We conclude that itis not feasible to use ITDvisual in wall-to-wall forest biomass inventory, but it could provide acost-efficient application for acquiring training data for ABA in forest biomass mapping.JRC.H.3-Forest Resources and Climat
3D-tiedosta lisäarvoa kaupunkien vihersuunnitteluun sekä katu- ja puistopuiden hoitoon
Tieteen tori: Yksityiskohtainen metsävaratiet
Structural Changes in Boreal Forests Can Be Quantified Using Terrestrial Laser Scanning
Terrestrial laser scanning (TLS) has been adopted as a feasible technique to digitize trees and forest stands, providing accurate information on tree and forest structural attributes. However, there is limited understanding on how a variety of forest structural changes can be quantified using TLS in boreal forest conditions. In this study, we assessed the accuracy and feasibility of TLS in quantifying changes in the structure of boreal forests. We collected TLS data and field reference from 37 sample plots in 2014 (T1) and 2019 (T2). Tree stems typically have planar, vertical, and cylindrical characteristics in a point cloud, and thus we applied surface normal filtering, point cloud clustering, and RANSAC-cylinder filtering to identify these geometries and to characterize trees and forest stands at both time points. The results strengthened the existing knowledge that TLS has the capacity to characterize trees and forest stands in space and showed that TLS could characterize structural changes in time in boreal forest conditions. Root-mean-square-errors (RMSEs) in the estimates for changes in the tree attributes were 0.99–1.22 cm for diameter at breast height (Δdbh), 44.14–55.49 cm2 for basal area (Δg), and 1.91–4.85 m for tree height (Δh). In general, tree attributes were estimated more accurately for Scots pine trees, followed by Norway spruce and broadleaved trees. At the forest stand level, an RMSE of 0.60–1.13 cm was recorded for changes in basal area-weighted mean diameter (ΔDg), 0.81–2.26 m for changes in basal area-weighted mean height (ΔHg), 1.40–2.34 m2/ha for changes in mean basal area (ΔG), and 74–193 n/ha for changes in the number of trees per hectare (ΔTPH). The plot-level accuracy was higher in Scots pine-dominated sample plots than in Norway spruce-dominated and mixed-species sample plots. TLS-derived tree and forest structural attributes at time points T1 and T2 differed significantly from each other (p < 0.05). If there was an increase or decrease in dbh, g, h, height of the crown base, crown ratio, Dg, Hg, or G recorded in the field, a similar outcome was achieved by using TLS. Our results provided new information on the feasibility of TLS for the purposes of forest ecosystem growth monitoring
Feasibility of Bi-Temporal Airborne Laser Scanning Data in Detecting Species-Specific Individual Tree Crown Growth of Boreal Forests
The tree crown, with its functionality of assimilation, respiration, and transpiration, is a key forest ecosystem structure, resulting in high demand for characterizing tree crown structure and growth on a spatiotemporal scale. Airborne laser scanning (ALS) was found to be useful in measuring the structural properties associated with individual tree crowns. However, established ALS-assisted monitoring frameworks are still limited. The main objective of this study was to investigate the feasibility of detecting species-specific individual tree crown growth by means of airborne laser scanning (ALS) measurements in 2009 (T1) and 2014 (T2). Our study was conducted in southern Finland over 91 sample plots with a size of 32 × 32 m. The ALS crown metrics of width (WD), projection area (A2D), volume (V), and surface area (A3D) were derived for species-specific individually matched trees in T1 and T2. The Scots pine (Pinus sylvestris), Norway spruce (Picea abies (L.) H. Karst), and birch (Betula sp.) were the three species groups that studied. We found a high capability of bi-temporal ALS measurements in the detection of species-specific crown growth (Δ), especially for the 3D crown metrics of V and A3D, with Cohen’s D values of 1.09–1.46 (p-value < 0.0001). Scots pine was observed to have the highest relative crown growth (rΔ) and showed statistically significant differences with Norway spruce and birch in terms of rΔWD, rΔA2D, rΔV, and rΔA3D at a 95% confidence interval. Meanwhile, birch and Norway spruce had no statistically significant differences in rΔWD, rΔV, and rΔA3D (p-value < 0.0001). However, the amount of rΔ variability that could be explained by the species was only 2–5%. This revealed the complex nature of growth controlled by many biotic and abiotic factors other than species. Our results address the great potential of ALS data in crown growth detection that can be used for growth studies at large scales
Structural Changes in Boreal Forests Can Be Quantified Using Terrestrial Laser Scanning
Terrestrial laser scanning (TLS) has been adopted as a feasible technique to digitize trees and forest stands, providing accurate information on tree and forest structural attributes. However, there is limited understanding on how a variety of forest structural changes can be quantified using TLS in boreal forest conditions. In this study, we assessed the accuracy and feasibility of TLS in quantifying changes in the structure of boreal forests. We collected TLS data and field reference from 37 sample plots in 2014 (T1) and 2019 (T2). Tree stems typically have planar, vertical, and cylindrical characteristics in a point cloud, and thus we applied surface normal filtering, point cloud clustering, and RANSAC-cylinder filtering to identify these geometries and to characterize trees and forest stands at both time points. The results strengthened the existing knowledge that TLS has the capacity to characterize trees and forest stands in space and showed that TLS could characterize structural changes in time in boreal forest conditions. Root-mean-square-errors (RMSEs) in the estimates for changes in the tree attributes were 0.99–1.22 cm for diameter at breast height (Δdbh), 44.14–55.49 cm2 for basal area (Δg), and 1.91–4.85 m for tree height (Δh). In general, tree attributes were estimated more accurately for Scots pine trees, followed by Norway spruce and broadleaved trees. At the forest stand level, an RMSE of 0.60–1.13 cm was recorded for changes in basal area-weighted mean diameter (ΔDg), 0.81–2.26 m for changes in basal area-weighted mean height (ΔHg), 1.40–2.34 m2/ha for changes in mean basal area (ΔG), and 74–193 n/ha for changes in the number of trees per hectare (ΔTPH). The plot-level accuracy was higher in Scots pine-dominated sample plots than in Norway spruce-dominated and mixed-species sample plots. TLS-derived tree and forest structural attributes at time points T1 and T2 differed significantly from each other (p < 0.05). If there was an increase or decrease in dbh, g, h, height of the crown base, crown ratio, Dg, Hg, or G recorded in the field, a similar outcome was achieved by using TLS. Our results provided new information on the feasibility of TLS for the purposes of forest ecosystem growth monitoring
Terrestrial Laser Scanning Reveal Connection Between Changes in Tree Stem Dimensions and Crown Structure
Peer reviewe
Understanding 3D structural complexity of individual Scots pine trees with different management history
Tree functional traits together with processes such as forest regeneration, growth, and mortality affect forest and tree structure. Forest management inherently impacts these processes. Moreover, forest structure, biodiversity, resilience, and carbon uptake can be sustained and enhanced with forest management activities. To assess structural complexity of individual trees, comprehensive and quantitative measures are needed, and they are often lacking for current forest management practices. Here, we utilized 3D information from individual Scots pine (Pinus sylvestris L.) trees obtained with terrestrial laser scanning to, first, assess effects of forest management on structural complexity of individual trees and, second, understand relationship between several tree attributes and structural complexity. We studied structural complexity of individual trees represented by a single scale-independent metric called "box dimension." This study aimed at identifying drivers affecting structural complexity of individual Scots pine trees in boreal forest conditions. The results showed that thinning increased structural complexity of individual Scots pine trees. Furthermore, we found a relationship between structural complexity and stem and crown size and shape as well as tree growth. Thus, it can be concluded that forest management affected structural complexity of individual Scots pine trees in managed boreal forests, and stem, crown, and growth attributes were identified as drivers of it.Peer reviewe
- …