38,188 research outputs found

    Cluster Accretion Shocks as Possible Acceleration Sites for Ultra High Energy Protons below the Greisen Cutoff

    Get PDF
    Three-dimensional hydrodynamic simulations of large scale structure in the Universe have shown that accretion shocks form during the gravitational collapse of one-dimensional caustics, and that clusters of galaxies formed at intersections of the caustics are surrounded by these accretion shocks. Estimated speed and curvature radius of the shocks are 1000-3000 \kms and about 5 Mpc, respectively, in the Ω=1\Omega=1 CDM universe. Assuming that energetic protons are accelerated by these accretion shocks via the first-order Fermi process and modeling particle transport around the shocks through Bohm diffusion, we suggest that protons can be accelerated up to the {\it Greisen cutoff energy} near 6×10196\times 10^{19} eV, provided the mean magnetic field strength in the region around the shocks is at least of order a microgauss. We have also estimated the proton flux at earth from the Virgo cluster. Assuming a few (1-10) \% of the ram pressure of the infalling matter would be transferred to the cosmic-rays, the estimated flux for E1019 E \sim 10^{19}eV is consistent with observations, so that such clusters could be plausible sources of the UHE CRs.Comment: 14 pages, uuencoded compressed postscript file. Accepted for Jan. 1, 1996 issue of Ap

    Winds and Shocks in Galaxy Clusters: Shock Acceleration on an Intergalactic Scale

    Get PDF
    We review the possible roles of large scale shocks as particle accelerators in clusters of galaxies. Recent observational and theoretical work has suggested that high energy charged particles may constitute a substantial pressure component in clusters. If true that would alter the expected dynamical evolution of clusters and increase the dynamical masses consistent with hydrostatic equilibrium. Moderately strong shocks are probably common in clusters, through the actions of several agents. The most obvious of these agents include winds from galaxies undergoing intense episodes of starbursts, active galaxies and cosmic inflows, such as accretion and cluster mergers. We describe our own work derived from simulations of large scale structure formation, in which we have, for the first time, explicitly included passive components of high energy particles. We find, indeed that shocks associated with these large scale flows can lead to nonthermal particle pressures big enough to influence cluster dynamics. These same simulations allow us also to compute nonthermal emissions from the clusters. Here we present resulting predictions of gamma-ray fluxes.Comment: 12 pages, uses aipproc.cls and aipproc.sty, to appear in Proc. of the International Symposium on "High Energy Gamma-Ray Astrophysics" (published as a volume of AIP Conference Series) eds. F. Aharonian and H. Voel
    corecore