53 research outputs found
Communication Complexity of Permutation-Invariant Functions
Motivated by the quest for a broader understanding of communication
complexity of simple functions, we introduce the class of
"permutation-invariant" functions. A partial function is permutation-invariant if for every bijection
and every , it is the case that . Most of the commonly studied functions
in communication complexity are permutation-invariant. For such functions, we
present a simple complexity measure (computable in time polynomial in given
an implicit description of ) that describes their communication complexity
up to polynomial factors and up to an additive error that is logarithmic in the
input size. This gives a coarse taxonomy of the communication complexity of
simple functions. Our work highlights the role of the well-known lower bounds
of functions such as 'Set-Disjointness' and 'Indexing', while complementing
them with the relatively lesser-known upper bounds for 'Gap-Inner-Product'
(from the sketching literature) and 'Sparse-Gap-Inner-Product' (from the recent
work of Canonne et al. [ITCS 2015]). We also present consequences to the study
of communication complexity with imperfectly shared randomness where we show
that for total permutation-invariant functions, imperfectly shared randomness
results in only a polynomial blow-up in communication complexity after an
additive overhead
Improved Bounds for Universal One-Bit Compressive Sensing
Unlike compressive sensing where the measurement outputs are assumed to be
real-valued and have infinite precision, in "one-bit compressive sensing",
measurements are quantized to one bit, their signs. In this work, we show how
to recover the support of sparse high-dimensional vectors in the one-bit
compressive sensing framework with an asymptotically near-optimal number of
measurements. We also improve the bounds on the number of measurements for
approximately recovering vectors from one-bit compressive sensing measurements.
Our results are universal, namely the same measurement scheme works
simultaneously for all sparse vectors.
Our proof of optimality for support recovery is obtained by showing an
equivalence between the task of support recovery using 1-bit compressive
sensing and a well-studied combinatorial object known as Union Free Families.Comment: 14 page
Communication with Partial Noiseless Feedback
We introduce the notion of one-way communication schemes with partial noiseless feedback. In this setting, Alice wishes to communicate a message to Bob by using a communication scheme that involves sending a sequence of bits over a channel while receiving feedback bits from Bob for delta fraction of the transmissions. An adversary is allowed to corrupt up to a constant fraction of Alice\u27s transmissions, while the feedback is always uncorrupted. Motivated by questions related to coding for interactive communication, we seek to determine the maximum error rate, as a function of 0 <= delta <= 1, such that Alice can send a message to Bob via some protocol with delta fraction of noiseless feedback. The case delta = 1 corresponds to full feedback, in which the result of Berlekamp [\u2764] implies that the maximum tolerable error rate is 1/3, while the case delta = 0 corresponds to no feedback, in which the maximum tolerable error rate is 1/4, achievable by use of a binary error-correcting code.
In this work, we show that for any delta in (0,1] and gamma in [0, 1/3), there exists a randomized communication scheme with noiseless delta-feedback, such that the probability of miscommunication is low, as long as no more than a gamma fraction of the rounds are corrupted. Moreover, we show that for any delta in (0, 1] and gamma < f(delta), there exists a deterministic communication scheme with noiseless delta-feedback that always decodes correctly as long as no more than a gamma fraction of rounds are corrupted. Here f is a monotonically increasing, piecewise linear, continuous function with f(0) = 1/4 and f(1) = 1/3. Also, the rate of communication in both cases is constant (dependent on delta and gamma but independent of the input length)
On the Complexity of Modulo-q Arguments and the Chevalley - Warning Theorem
We study the search problem class PPA_q defined as a modulo-q analog of the well-known polynomial parity argument class PPA introduced by Papadimitriou (JCSS 1994). Our first result shows that this class can be characterized in terms of PPA_p for prime p.
Our main result is to establish that an explicit version of a search problem associated to the Chevalley - Warning theorem is complete for PPA_p for prime p. This problem is natural in that it does not explicitly involve circuits as part of the input. It is the first such complete problem for PPA_p when p ? 3.
Finally we discuss connections between Chevalley-Warning theorem and the well-studied short integer solution problem and survey the structural properties of PPA_q
Dimension Reduction for Polynomials over Gaussian Space and Applications
We introduce a new technique for reducing the dimension of the ambient space of low-degree polynomials in the Gaussian space while preserving their relative correlation structure. As an application, we obtain an explicit upper bound on the dimension of an epsilon-optimal noise-stable Gaussian partition. In fact, we address the more general problem of upper bounding the number of samples needed to epsilon-approximate any joint distribution that can be non-interactively simulated from a correlated Gaussian source. Our results significantly improve (from Ackermann-like to "merely" exponential) the upper bounds recently proved on the above problems by De, Mossel & Neeman [CCC 2017, SODA 2018 resp.] and imply decidability of the larger alphabet case of the gap non-interactive simulation problem posed by Ghazi, Kamath & Sudan [FOCS 2016].
Our technique of dimension reduction for low-degree polynomials is simple and can be seen as a generalization of the Johnson-Lindenstrauss lemma and could be of independent interest
IST Austria Technical Report
One central issue in the formal design and analysis of reactive systems is the notion of refinement that asks whether all behaviors of the implementation is allowed by the specification. The local interpretation of behavior leads to the notion of simulation. Alternating transition systems (ATSs) provide a general model for composite reactive systems, and the simulation relation for ATSs is known as alternating simulation. The simulation relation for fair transition systems is called fair simulation. In this work our main contributions are as follows: (1) We present an improved algorithm for fair simulation with Büchi fairness constraints; our algorithm requires O(n3 · m) time as compared to the previous known O(n6)-time algorithm, where n is the number of states and m is the number of transitions. (2) We present a game based algorithm for alternating simulation that requires O(m2)-time as compared to the previous known O((n · m)2)-time algorithm, where n is the number of states and m is the size of transition relation. (3) We present an iterative algorithm for alternating simulation that matches the time complexity of the game based algorithm, but is more space efficient than the game based algorithm
LIPIcs
One central issue in the formal design and analysis of reactive systems is the notion of refinement that asks whether all behaviors of the implementation is allowed by the specification. The local interpretation of behavior leads to the notion of simulation. Alternating transition systems (ATSs) provide a general model for composite reactive systems, and the simulation relation for ATSs is known as alternating simulation. The simulation relation for fair transition systems is called fair simulation. In this work our main contributions are as follows: (1) We present an improved algorithm for fair simulation with Büchi fairness constraints; our algorithm requires O(n 3·m) time as compared to the previous known O(n 6)-time algorithm, where n is the number of states and m is the number of transitions. (2) We present a game based algorithm for alternating simulation that requires O(m2)-time as compared to the previous known O((n·m)2)-time algorithm, where n is the number of states and m is the size of transition relation. (3) We present an iterative algorithm for alternating simulation that matches the time complexity of the game based algorithm, but is more space efficient than the game based algorithm. © Krishnendu Chatterjee, Siddhesh Chaubal, and Pritish Kamath
Adventures in Monotone Complexity and TFNP
Separations: We introduce a monotone variant of Xor-Sat and show it has exponential monotone circuit complexity. Since Xor-Sat is in NC^2, this improves qualitatively on the monotone vs. non-monotone separation of Tardos (1988). We also show that monotone span programs over R can be exponentially more powerful than over finite fields. These results can be interpreted as separating subclasses of TFNP in communication complexity.
Characterizations: We show that the communication (resp. query) analogue of PPA (subclass of TFNP) captures span programs over F_2 (resp. Nullstellensatz degree over F_2). Previously, it was known that communication FP captures formulas (Karchmer - Wigderson, 1988) and that communication PLS captures circuits (Razborov, 1995)
Learning Neural Networks with Sparse Activations
A core component present in many successful neural network architectures, is
an MLP block of two fully connected layers with a non-linear activation in
between. An intriguing phenomenon observed empirically, including in
transformer architectures, is that, after training, the activations in the
hidden layer of this MLP block tend to be extremely sparse on any given input.
Unlike traditional forms of sparsity, where there are neurons/weights which can
be deleted from the network, this form of {\em dynamic} activation sparsity
appears to be harder to exploit to get more efficient networks. Motivated by
this we initiate a formal study of PAC learnability of MLP layers that exhibit
activation sparsity. We present a variety of results showing that such classes
of functions do lead to provable computational and statistical advantages over
their non-sparse counterparts. Our hope is that a better theoretical
understanding of {\em sparsely activated} networks would lead to methods that
can exploit activation sparsity in practice.Comment: Proceedings of the 37th Conference on Learning Theory (COLT 2024), 20
page
- …