65 research outputs found
Recent highlights from GENIE v3
AbstractThe release of GENIE v3.0.0 was a major milestone in the long history of the GENIE project, delivering several alternative comprehensive neutrino interaction models, improved charged-lepton scattering simulations, a range of beyond the Standard Model simulation capabilities, improved experimental interfaces, expanded core framework capabilities, and advanced new frameworks for the global analysis of neutrino scattering data and tuning of neutrino interaction models. Steady progress continued following the release of GENIE v3.0.0. New tools and a large number of new physics models, comprehensive model configurations, and tunes have been made publicly available and planned for release in v3.2.0. This article highlights some of the most recent technical and physics developments in the GENIE v3 series.</jats:p
Resonance axial-vector mass from experiments on neutrino-hydrogen and neutrino-deuterium scattering
Running axial mass of the nucleon as a phenomenological tool for calculating quasielastic neutrino–nucleus cross sections
AbstractWe suggest an empirical rule-of-thumb for calculating the cross sections of charged-current quasielastic (CCQE) and CCQE-like interactions of neutrinos and antineutrinos with nuclei. The approach is based on the standard relativistic Fermi-gas model and on the notion of neutrino energy dependent axial-vector mass of the nucleon, governed by a couple of adjustable parameters, one of which is the conventional charged-current axial-vector mass. The inelastic background contributions and final-state interactions are therewith simulated using GENIE 3 neutrino event generator. An extensive comparison of our calculations with earlier and current accelerator CCQE and CCQE-like data for different nuclear targets shows good or at least qualitative overall agreement over a wide energy range. We also discuss some problematical issues common to several competing contemporary models of the CCQE (anti)neutrino–nucleus scattering and to the current neutrino interaction generators.</jats:p
Running axial mass of the nucleon as a phenomenological tool for calculating quasielastic neutrino–nucleus cross sections
We suggest an empirical rule-of-thumb for calculating the cross sections of charged-current quasielastic (CCQE) and CCQE-like interactions of neutrinos and antineutrinos with nuclei. The approach is based on the standard relativistic Fermi-gas model and on the notion of neutrino energy dependent axial-vector mass of the nucleon, governed by a couple of adjustable parameters, one of which is the conventional charged-current axial-vector mass. The inelastic background contributions and final-state interactions are therewith simulated using GENIE
Detection of Impurities in Water Using Nanostructures
Saltpeter negatively affects the human body, it contributes to the formation of a dangerous substance in the blood – methemoglobin, which leads to oxygen starvation. An increase in methemoglobin up to 60% leads to a fatal outcome. Also, the excess of saltpeter in water causes poisoning, disorders of the gastrointestinal tract, excretory and endocrine systems, the destruction of tooth enamel and the appearance of caries. Saltpeter can be determined in water by chemical analysis of the liquid, as well as using nanomaterials. These structures have a sufficiently highly developed adsorption surface, this property helps to detect the presence of saltpeter in water, and at the same time to clean it. The results of the studies made it possible to establish that after passing water with an admixture of saltpeter, the concentration of the latter decreased. Thus, the theoretical calculations showing the possibility of saltpeter adsorption by carbon nanotubes were confirmed. The obtained results and the applied methods can be used in conducting complex high-performance water examinations.</jats:p
Modification of Pyrolyzed Polyacrylonitrile with Silver Atoms
Recently, the search for new materials for nanoelectronics has attracted the interest of scientists. New materials, which are metal-polymer nanocomposites, can be used in modern electronics. The paper presents the possibility and mechanisms for the formation of a metal composite based on single-layer and two-layer pyrolyzed polyacrylonitrile when interacting with silver atoms. The results of the silver atom adsorption on the polymer surface are described, the possibility of filling the interlayer space with metal atoms is shown, and geometric and electron-energy characteristics are established. Theoretical calculations were performed using a molecular cluster model using a non-empirical method in the STO basis. The structure and electron-energy state of a metal-carbon nanocomposite based on pyrolyzed polyacrylonitrile with silver atoms are studied. It was found that the silver atom is adsorbed on the surface of PPAN, and the adsorption process is almost independent of the selected adsorption center. The introduction of metal atoms into the interplanar space of PPAN causes the initially planar monolayers of PPAN to bend, while the structure retains its stability. It was found that the presence of metal atoms in the PPAN structure causes a change in the band gap, which leads to a change in the conductive properties of the resulting nanocomposite.</jats:p
Analysis of the boundaries of the quasi-elastic neutrino-nucleus cross section in the SuSAM* model
In this work we obtain the analytical expressions for the boundaries of the charged current quasi-elastic double differential cross section in terms of dimensionless energy and momentum transfers, for the Relativistic Fermi Gas (RFG) and the Super-Scaling approach with relativistic effective mass (SuSAM*) models, within the scaling formalism. In addition, this new double differential cross section in the scaling formalism has very good properties to be implemented in the Monte Carlo (MC) neutrino event generator, particularly because its peak is almost flat with the (anti)neutrino energy. This makes it especially well-suited for the event generation by the acceptance-rejection method usually used in the neutrino generators. Finally, we analyze the total charged current quasi-elastic (CCQE) cross section for both models and attribute the enhancement observed in the SuSAM* total cross section to the high-momentum components which are present, in a phenomenological way, in its scaling function, while these are absent in the RFG model
AGKY Hadronization Model Tuning in GENIE v3
The GENIE neutrino Monte Carlo describes neutrino-induced hadronization with an effective model, known as AGKY, which is interfaced with PYTHIA at high invariant mass. Only the low-mass AGKY model parameters were extracted from hadronic shower data from the FNAL 15 ft and BEBC experiments. In this paper, the first hadronization tune on averaged charged multiplicity data from deuterium and hydrogen bubble chamber experiments is presented, with a complete estimation of parameter uncertainties. A partial tune on deuterium data only highlights the tensions between hydrogen and deuterium datasets
jberger7/Generator-IND: GENIE with Induced Nucleon Decay
<p>GENIE is a Monte Carlo simulation code for neutrino-nucleus interactions that can also simulate nucleon decay. This release is a fork of the GENIE code to include processes of induced nucleon decay as part of the standard nucleon decay package.</p>
- …