5 research outputs found

    Assessing slope forest effect on flood process caused by a short-duration storm in a small catchment

    Get PDF
    Land use has significant impact on the hydrologic and hydraulic processes in a catchment. This work applies a hydrodynamic based numerical model to quantitatively investigate the land use effect on the flood patterns under various rainfall and terrain conditions in an ideal V-shaped catchment and a realistic catchment, indicating the land use could considerably affect the rainfall-flood process and such effect varies with the catchment terrain, land use scenario and the rainfall events. The rainfall-flood process is less sensitive for the side slope than the channel slope. For a channel slope lower than the critical value in this work, the forest located in the middle of the catchment slope could most effectively attenuate the flood peak. When the channel slope is higher than the critical one, forest located in the downstream of the catchment could most significantly mitigate the peak discharge. Moreover, the attenuation effect becomes more obvious as the rainfall becomes heavier. The fragmentation of vegetation does not reduce the flood peak in a more obvious way, compared with the integral vegetation patterns with the same area proportion. The research can help more reasonably guide the land use plan related to flood risk

    Urban surface water flood modelling – a comprehensive review of current models and future challenges

    No full text
    Urbanisation is an irreversible trend as a result of social and economic development. Urban areas, with high concentration of population, key infrastructure, and businesses are extremely vulnerable to flooding and may suffer severe socio-economic losses due to climate change. Urban flood modelling tools are in demand to predict surface water inundation caused by intense rainfall and to manage associated flood risks in urban areas. These tools have been rapidly developing in recent decades. In this study, we present a comprehensive review of the advanced urban flood models and emerging approaches for predicting urban surface water flooding driven by intense rainfall. The study explores the advantages and limitations of existing model types, highlights the most recent advances and identifies major challenges. Issues of model complexities, scale effects, and computational efficiency are also analysed. The results will inform scientists, engineers, and decision-makers of the latest developments and guide the model selection based on desired objectives

    Assessing slope forest effect on flood process caused by a short-duration storm in a small catchment

    No full text
    Land use has significant impact on the hydrologic and hydraulic processes in a catchment. This work applies a hydrodynamic based numerical model to quantitatively investigate the land use effect on the flood patterns under various rainfall and terrain conditions in an ideal V-shaped catchment and a realistic catchment, indicating the land use could considerably affect the rainfall-flood process and such effect varies with the catchment terrain, land use scenario and the rainfall events. The rainfall-flood process is less sensitive for the side slope than the channel slope. For a channel slope lower than the critical value in this work, the forest located in the middle of the catchment slope could most effectively attenuate the flood peak. When the channel slope is higher than the critical one, forest located in the downstream of the catchment could most significantly mitigate the peak discharge. Moreover, the attenuation effect becomes more obvious as the rainfall becomes heavier. The fragmentation of vegetation does not reduce the flood peak in a more obvious way, compared with the integral vegetation patterns with the same area proportion. The research can help more reasonably guide the land use plan related to flood risk

    Additional file 6: Figure S5. of Combined effect of BCG vaccination and enriched environment promote neurogenesis and spatial cognition via a shift in meningeal macrophage M2 polarization

    No full text
    Intravenous injection of recombinant IFN-γ recruits T cells to the CP from the periphery. (A-B) Representative micrographs of the dura mater stained for CD3e (red) and Hoechst (blue) following intravenous injection of IFN-γ (1 ng per mice; n = 3). (C-D) Homing monocytes were not detected via their in situ labeling by intravenously injected FITC-conjugated anti-CD11b antibodies (Biolegend; 2 μg in 200 μl PBS); representative pictures of whole mounts of excised dura mater are shown (2 weeks after BCG vaccination; n = 3). (E) Quantitative analysis of CD3e+ T cells in the dura mater in the mice treated with recombinant IFN-γ (1 ng, NeoBioscience) and IgG. (F) The graphs show expression analysis of the CCL-5 gene in the hippocampi of the four groups. *p < 0.05, **p < 0.01 between the indicated groups, student’s t test in E; two-way ANOVA, followed by LSD post hoc test in F, n = 3 per group. (TIF 1697 kb
    corecore