25,085 research outputs found

    The Aesthetic Uncanny: Staging Dorian Gray

    Get PDF
    This article discusses my theatrical adaptation of Oscar Wilde's The Picture of Dorian Gray (1891) for the Edinburgh Festival Fringe (2008). Freud's concept of the uncanny (1919) was treated as a purely aesthetic phenomenon and related to late nineteenth century social and literary preoccupations such as Christianity, the supernatural and glamorous, criminal homosexuality. These considerations led to a conceptual ground plan that allowed for experiments during rehearsal in a form of theatrical shorthand

    Geodynamics Branch research report, 1982

    Get PDF
    The research program of the Geodynamics Branch is summarized. The research activities cover a broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography. The NASA programs which are supported by the work described include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX) and Geopotential Research Mission. The individual papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies

    On effects of regular S=1 dilution of S=1/2 antiferromagnetic Heisenberg chains by a quantum Monte Carlo simulation

    Full text link
    The effects of regular S=1 dilution of S=1/2 isotropic antiferromagnetic chain are investigated by the quantum Monte Carlo loop/cluster algorithm. Our numerical results show that there are two kinds of ground-state phases which alternate with the variation of S1=1S^1=1 concentration. When the effective spin of a unit cell is half-integer, the ground state is ferrimagnetic with gapless energy spectrum and the magnetism becomes weaker with decreasing of the S1S^1 concentration ρ=1/M\rho = 1/M. While it is integer, a non-magnetic ground state with gaped spectrum emerges and the gap gradually becomes narrowed as fitted by a relation of Δ1.25ρ\Delta \approx 1.25\sqrt{\rho}.Comment: 6 pages, 9 figure

    Toward a better understanding of the doping mechanism involved in Mo(tfd-COCF3)3_3)_3 doped PBDTTT-c

    Full text link
    In this study, we aim to improve our understanding of the doping mechanism involved in the polymer PBDTTT-c doped with(Mo(tfd-COCF3)3. We follow the evolution of the hole density with dopant concentration to highlight the limits of organic semiconductor doping. To enable the use of doping to enhance the performance of organic electronic devices, doping efficiency must be understood and improved. We report here a study using complementary optical and electrical characterization techniques, which sheds some light on the origin of this limited doping efficiency at high dopant concentration. Two doping mechanisms are considered, the direct charge transfer (DCT) and the charge transfer complex (CTC). We discuss the validity of the model involved as well as its impact on the doping efficiency.Comment: Accepted manuscript, J. Appl. Phy

    Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning

    Full text link
    Model-free deep reinforcement learning algorithms have been shown to be capable of learning a wide range of robotic skills, but typically require a very large number of samples to achieve good performance. Model-based algorithms, in principle, can provide for much more efficient learning, but have proven difficult to extend to expressive, high-capacity models such as deep neural networks. In this work, we demonstrate that medium-sized neural network models can in fact be combined with model predictive control (MPC) to achieve excellent sample complexity in a model-based reinforcement learning algorithm, producing stable and plausible gaits to accomplish various complex locomotion tasks. We also propose using deep neural network dynamics models to initialize a model-free learner, in order to combine the sample efficiency of model-based approaches with the high task-specific performance of model-free methods. We empirically demonstrate on MuJoCo locomotion tasks that our pure model-based approach trained on just random action data can follow arbitrary trajectories with excellent sample efficiency, and that our hybrid algorithm can accelerate model-free learning on high-speed benchmark tasks, achieving sample efficiency gains of 3-5x on swimmer, cheetah, hopper, and ant agents. Videos can be found at https://sites.google.com/view/mbm

    Research program of the Geodynamics Branch

    Get PDF
    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members

    New considerations on scale extrapolation of wing pressure distributions affected by transonic shock-induced separations

    Get PDF
    Use of this analytical parameter, it is shown, highlights the distinction between cases which are dominated by trailing-edge separation, and those for which separation at the shock foot is dominant. Use of the analytical parameter and the distinction noted above greatly improves the correlation of separation data and the extrapolation of wind tunnel data to flight conditions

    A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems

    Full text link
    We use the density matrix renormalization group (DMRG) method to study the ground and low-lying excited states of three kinds of uniform and dimerized alternating spin chains. The DMRG procedure is also employed to obtain low-temperature thermodynamic properties of these systems. We consider a 2N site system with spins s1s_1 and s2s_2 alternating from site to site and interacting via a Heisenberg antiferromagnetic exchange. The three systems studied correspond to (s1,s2)(s_1 ,s_2 ) being equal to (1,1/2),(3/2,1/2)(1,1/2),(3/2,1/2) and (3/2,1)(3/2,1); all of them have very similar properties. The ground state is found to be ferrimagnetic with total spin sG=N(s1s2)s_G =N(s_1 - s_2). We find that there is a gapless excitation to a state with spin sG1s_G -1, and a gapped excitation to a state with spin sG+1s_G +1. Surprisingly, the correlation length in the ground state is found to be very small for this gapless system. The DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls instability. Furthermore, our studies of the magnetization, magnetic susceptibility χ\chi and specific heat show strong magnetic-field dependences. The product χT\chi T shows a minimum as a function of temperature T at low magnetic fields; the minimum vanishes at high magnetic fields. This low-field behavior is in agreement with earlier experimental observations. The specific heat shows a maximum as a function of temperature, and the height of the maximum increases sharply at high magnetic fields. Although all the three systems show qualitatively similar behavior, there are some notable quantitative differences between the systems in which the site spin difference, s1s2|s_1 - s_2|, is large and small respectively.Comment: 16 LaTeX pages, 13 postscript figure

    The Formal Underpinnings of the Response Functions used in X-Ray Spectral Analysis

    Get PDF
    This work provides an in-depth mathematical description of the response functions that are used for spatial and spectral analysis of X-ray data. The use of such functions is well-known to anyone familiar with the analysis of X-ray data where they may be identified with the quantities contained in the Ancillary Response File (ARF), the Redistribution Matrix File (RMF), and the Exposure Map. Starting from first-principles, explicit mathematical expressions for these functions, for both imaging and dispersive modes, are arrived at in terms of the underlying instrumental characteristics of the telescope including the effects of pointing motion. The response functions are presented in the context of integral equations relating the expected detector count rate to the source spectrum incident upon the telescope. Their application to the analysis of several source distributions is considered. These include multiple, possibly overlapping, and spectrally distinct point sources, as well as extended sources. Assumptions and limitations behind the usage of these functions, as well as their practical computation are addressed.Comment: 22 pages, 3 figures (LaTeX
    corecore