25,085 research outputs found
The Aesthetic Uncanny: Staging Dorian Gray
This article discusses my theatrical adaptation of Oscar Wilde's The Picture of Dorian Gray (1891) for the Edinburgh Festival Fringe (2008). Freud's concept of the uncanny (1919) was treated as a purely aesthetic phenomenon and related to late nineteenth century social and literary preoccupations such as Christianity, the supernatural and glamorous, criminal homosexuality. These considerations led to a conceptual ground plan that allowed for experiments during rehearsal in a form of theatrical shorthand
Geodynamics Branch research report, 1982
The research program of the Geodynamics Branch is summarized. The research activities cover a broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography. The NASA programs which are supported by the work described include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX) and Geopotential Research Mission. The individual papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies
On effects of regular S=1 dilution of S=1/2 antiferromagnetic Heisenberg chains by a quantum Monte Carlo simulation
The effects of regular S=1 dilution of S=1/2 isotropic antiferromagnetic
chain are investigated by the quantum Monte Carlo loop/cluster algorithm. Our
numerical results show that there are two kinds of ground-state phases which
alternate with the variation of concentration. When the effective spin
of a unit cell is half-integer, the ground state is ferrimagnetic with gapless
energy spectrum and the magnetism becomes weaker with decreasing of the
concentration . While it is integer, a non-magnetic ground state
with gaped spectrum emerges and the gap gradually becomes narrowed as fitted by
a relation of .Comment: 6 pages, 9 figure
Toward a better understanding of the doping mechanism involved in Mo(tfd-COCF doped PBDTTT-c
In this study, we aim to improve our understanding of the doping mechanism
involved in the polymer PBDTTT-c doped with(Mo(tfd-COCF3)3. We follow the
evolution of the hole density with dopant concentration to highlight the limits
of organic semiconductor doping. To enable the use of doping to enhance the
performance of organic electronic devices, doping efficiency must be understood
and improved. We report here a study using complementary optical and electrical
characterization techniques, which sheds some light on the origin of this
limited doping efficiency at high dopant concentration. Two doping mechanisms
are considered, the direct charge transfer (DCT) and the charge transfer
complex (CTC). We discuss the validity of the model involved as well as its
impact on the doping efficiency.Comment: Accepted manuscript, J. Appl. Phy
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
Model-free deep reinforcement learning algorithms have been shown to be
capable of learning a wide range of robotic skills, but typically require a
very large number of samples to achieve good performance. Model-based
algorithms, in principle, can provide for much more efficient learning, but
have proven difficult to extend to expressive, high-capacity models such as
deep neural networks. In this work, we demonstrate that medium-sized neural
network models can in fact be combined with model predictive control (MPC) to
achieve excellent sample complexity in a model-based reinforcement learning
algorithm, producing stable and plausible gaits to accomplish various complex
locomotion tasks. We also propose using deep neural network dynamics models to
initialize a model-free learner, in order to combine the sample efficiency of
model-based approaches with the high task-specific performance of model-free
methods. We empirically demonstrate on MuJoCo locomotion tasks that our pure
model-based approach trained on just random action data can follow arbitrary
trajectories with excellent sample efficiency, and that our hybrid algorithm
can accelerate model-free learning on high-speed benchmark tasks, achieving
sample efficiency gains of 3-5x on swimmer, cheetah, hopper, and ant agents.
Videos can be found at https://sites.google.com/view/mbm
Research program of the Geodynamics Branch
This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members
New considerations on scale extrapolation of wing pressure distributions affected by transonic shock-induced separations
Use of this analytical parameter, it is shown, highlights the distinction between cases which are dominated by trailing-edge separation, and those for which separation at the shock foot is dominant. Use of the analytical parameter and the distinction noted above greatly improves the correlation of separation data and the extrapolation of wind tunnel data to flight conditions
A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems
We use the density matrix renormalization group (DMRG) method to study the
ground and low-lying excited states of three kinds of uniform and dimerized
alternating spin chains. The DMRG procedure is also employed to obtain
low-temperature thermodynamic properties of these systems. We consider a 2N
site system with spins and alternating from site to site and
interacting via a Heisenberg antiferromagnetic exchange. The three systems
studied correspond to being equal to and
; all of them have very similar properties. The ground state is found
to be ferrimagnetic with total spin . We find that there is
a gapless excitation to a state with spin , and a gapped excitation to
a state with spin . Surprisingly, the correlation length in the ground
state is found to be very small for this gapless system. The DMRG analysis
shows that the chain is susceptible to a conditional spin-Peierls instability.
Furthermore, our studies of the magnetization, magnetic susceptibility
and specific heat show strong magnetic-field dependences. The product
shows a minimum as a function of temperature T at low magnetic fields; the
minimum vanishes at high magnetic fields. This low-field behavior is in
agreement with earlier experimental observations. The specific heat shows a
maximum as a function of temperature, and the height of the maximum increases
sharply at high magnetic fields. Although all the three systems show
qualitatively similar behavior, there are some notable quantitative differences
between the systems in which the site spin difference, , is large
and small respectively.Comment: 16 LaTeX pages, 13 postscript figure
The Formal Underpinnings of the Response Functions used in X-Ray Spectral Analysis
This work provides an in-depth mathematical description of the response
functions that are used for spatial and spectral analysis of X-ray data. The
use of such functions is well-known to anyone familiar with the analysis of
X-ray data where they may be identified with the quantities contained in the
Ancillary Response File (ARF), the Redistribution Matrix File (RMF), and the
Exposure Map. Starting from first-principles, explicit mathematical expressions
for these functions, for both imaging and dispersive modes, are arrived at in
terms of the underlying instrumental characteristics of the telescope including
the effects of pointing motion. The response functions are presented in the
context of integral equations relating the expected detector count rate to the
source spectrum incident upon the telescope. Their application to the analysis
of several source distributions is considered. These include multiple, possibly
overlapping, and spectrally distinct point sources, as well as extended
sources. Assumptions and limitations behind the usage of these functions, as
well as their practical computation are addressed.Comment: 22 pages, 3 figures (LaTeX
- …