11,897 research outputs found

    Earth's gravity field mapping requirements and concept

    Get PDF
    A future sensor is considered for mapping the Earth's gravity field to meet future scientific and practical requirements for earth and oceanic dynamics. These are approximately + or - 0.1 to 10 mgal over a block size of about 50 km and over land and an ocean geoid to 1 to 2 cm over a distance of about 50 km. To achieve these values requires a gravity gradiometer with a sensitivity of approximately 10 to the -4 power EU in a circular polar orbiting spacecraft with an orbital altitude ranging 160 km to 180 km

    Secondary Star Formation in a Population III Object

    Full text link
    We explore the possibility of subsequent star formation after a first star forms in a Pop III object, by focusing on the radiation hydrodynamic (RHD) feedback brought by ionizing photons as well as H2 dissociating photons. For the purpose, we perform three-dimensional RHD simulations, where the radiative transfer of ionizing photons and H2 dissociating photons from a first star is self-consistently coupled with hydrodynamics based on a smoothed particle hydrodynamics method. As a result, it is shown that density peaks above a threshold density can keep collapsing owing to the shielding of H2 dissociating radiation by an H2 shell formed ahead of a D-type ionization front. But, below the threshold density, an M-type ionization front accompanied by a shock propagates, and density peaks are radiation hydrodynamically evaporated by the shock. The threshold density is dependent on the distance from a source star, which is ≈102cm−3\approx 10^2 cm^{-3} for the source distance of 30pc. Taking into consideration that the extent of a Pop III object is ≈100\approx 100pc and density peaks within it have the density of 102−410^{2-4}cm−3^{-3}, it is concluded that the secondary star formation is allowed in the broad regions in a Pop III object.Comment: 4pages, 2 figures, submitted to Ap

    How Protostellar Outflows Help Massive Stars Form

    Full text link
    We consider the effects of an outflow on radiation escaping from the infalling envelope around a massive protostar. Using numerical radiative transfer calculations, we show that outflows with properties comparable to those observed around massive stars lead to significant anisotropy in the stellar radiation field, which greatly reduces the radiation pressure experienced by gas in the infalling envelope. This means that radiation pressure is a much less significant barrier to massive star formation than has previously been thought.Comment: 4 pages, 2 figures, emulateapj, accepted for publication in ApJ Letter

    Ocean tides and quasi-stationary departures from the marine geoid investigation

    Get PDF
    The detection of tides and/or currents through the analysis of data generated in connection with the Ocean Geoid Determination Investigation is presented. A discussion of the detailed objectives and approach are included

    Formation of the First Stars by Accretion

    Get PDF
    The process of star formation from metal-free gas is investigated by following the evolution of accreting protostars with emphasis on the properties of massive objects. The main aim is to establish the physical processes that determine the upper mass limit of the first stars. Although the consensus is that massive stars were commonly formed in the first cosmic structures, our calculations show that their actual formation depends sensitively on the mass accretion rate and its time variation. Even in the rather idealized case in which star formation is mainly determined by dot{M}acc, the characteristic mass scale of the first stars is rather uncertain. We find that there is a critical mass accretion rate dot{M}crit = 4 10^{-3} Msun/yr that separates solutions with dot{M}acc> 100 Msun can form, provided there is sufficient matter in the parent clouds, from others (dot{M}acc > dot{M}crit) where the maximum mass limit decreases as dot{M}acc increases. In the latter case, the protostellar luminosity reaches the Eddington limit before the onset of hydrogen burning at the center via the CN-cycle. This phase is followed by a rapid and dramatic expansion of the radius, possibly leading to reversal of the accretion flow when the stellar mass is about 100Msun. (abridged)Comment: 34 pages, 12 figures. ApJ, in pres

    Performance Analysis of the Spaceborne Laser Ranging System

    Get PDF
    The 'spaceborne laser ranging system' is a proposed short pulse laser on board an orbiting spacecraft. It measures the distances between the spacecraft and many laser retroreflectors (targets) deployed on the earth's surface. The precision of these range measurements was assumed to be about plus or minus 2 cm. These measurements were then used together with the orbital dynamics of the spacecraft to derive the intersite vector between the laser ground targets. The errors associated with this vector were on the order of 1 to 2 cm. The baseline distances determined range from 25 km to 1200 km. By repeating the measurements of the intersite vector, strain and strain rate errors were estimated. The realizable precision for intersite distance determination was estimated to be on the order of 0.5 cm at 300 km and about 1.5 cm at 1200 km. The corresponding inaccuracies for the intersite distances were larger, than is 1 cm and 3.5 cm respectively. The corresponding precision in the vertical direction was 1 cm and 3 cm

    Gravity anomaly detection: Apollo/Soyuz

    Get PDF
    The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown

    Radiative Shock-Induced Collapse of Intergalactic Clouds

    Full text link
    Accumulating observational evidence for a number of radio galaxies suggests an association between their jets and regions of active star formation. The standard picture is that shocks generated by the jet propagate through an inhomogeneous medium and trigger the collapse of overdense clouds, which then become active star-forming regions. In this contribution, we report on recent hydrodynamic simulations of radiative shock-cloud interactions using two different cooling models: an equilibrium cooling-curve model assuming solar metallicities and a non-equilibrium chemistry model appropriate for primordial gas clouds. We consider a range of initial cloud densities and shock speeds in order to quantify the role of cooling in the evolution. Our results indicate that for moderate cloud densities (>1 cm^{-3}) and shock Mach numbers (<20), cooling processes can be highly efficient and result in more than 50% of the initial cloud mass cooling to below 100 K. We also use our results to estimate the final H_2 mass fraction for the simulations that use the non-equilibrium chemistry package. This is an important measurement, since H_2 is the dominant coolant for a primordial gas cloud. We find peak H_2 mass fractions of >0.01 and total H_2 mass fractions of >10^{-5} for the cloud gas. Finally, we compare our results with the observations of jet-induced star formation in ``Minkowski's Object.'' We conclude that its morphology, star formation rate (~ 0.3M_solar/yr) and stellar mass (~ 1.2 x 10^7 M_solar) can be explained by the interaction of a 90,000 km/s jet with an ensemble of moderately dense (~ 10 cm^{-3}), warm (10^4 K) intergalactic clouds in the vicinity of its associated radio galaxy at the center of the galaxy cluster.Comment: 30 pages, 7 figures, submitted to Astrophysical Journa
    • …