71 research outputs found

    Detecting the invisible universe with neutrinos and dark matter

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 113-118).Recent work in astrophysics has show that most of the matter in the universe is non-luminous. This work investigates two searches for non-luminous matter: hot dark matter formed from cosmic relic neutrinos from the Big Bang, and directional detection of cold dark matter. The cosmic neutrino background is investigated through the KATRIN experiment, using neutrino capture on tritium to search for a signal. A sensitivity at KATRIN of about 10⁴ events per year, or a local overdensity of relic neutrinos of about 3 x 10⁹ is found. Directional detection of cold dark matter provides a unique way to distinguish a dark matter signal from terrestrial backgrounds, using the expected direction of a dark matter wind based on astrophysical parameters. This work presents a new technique for directional dark matter detection--a drift chamber readout using a CCD camera. The backgrounds of this detector are investigated and enumerated, and a dark matter search sets a limit at mX =100 GeV of 3.7 x 10?³³ cm².by Asher C. Kaboth.Ph.D

    Dark Matter Time Projection Chamber : Recent R&D Results

    Get PDF
    The Dark Matter Time Projection Chamber collaboration recently reported a dark matter limit obtained with a 10 liter time projection chamber filled with CF[subscript 4] gas. The 10 liter detector was capable of 2D tracking (perpendicular to the drift direction) and 2D fiducialization, and only used information from two CCD cameras when identifying tracks and rejecting backgrounds. Since that time, the collaboration has explored the potential benefits of photomultiplier tube and electronic charge readout to achieve 3D tracking, and particle identification for background rejection. The latest results of this effort is described here

    A High Pressure Time Projection Chamber with Optical Readout

    Full text link
    Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has been constructed and operated at Royal Holloway University of London and CERN as a first step in the development of a HPTPC capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment such as the Deep Underground Neutrino Experiment. In this paper we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout, using four CCD cameras, of signals from Am-241 sources.Comment: 40 pages, 24 figure

    Focal-plane detector system for the KATRIN experiment

    Get PDF
    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.Comment: 28 pages. Two figures revised for clarity. Final version published in Nucl. Inst. Meth.

    First Science Results from the LUX-ZEPLIN (LZ) Experiment

    No full text
    The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. Operating since mid-2021, it is the largest xenon TPC experiment in the world, with sensitivity to a wide range of rare event searches. I will present data from the first science operations of LZ and the results of the first WIMP dark matter search, as well as future work.</div

    Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN

    No full text
    © 2019 authors. Published by the American Physical Society. We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0-1.1+0.9) eV2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation

    Measurements of ν̅μ and ν̅μ + νμ charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV

    No full text
    We report measurements of the flux-integrated (nu) over bar (mu) and (nu) over bar (mu) + nu(mu) charged-current cross -sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti -)neutrino charged-current interaction with one induced mu(+/-) and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, p(mu) > 400 MeV/c and theta(mu) 200 MeV/c, theta(pi) 600 MeV/c, theta(p) (mu), cross-sections and (nu) over bar (mu) + nu(mu), cross-sections on water and hydrocarbon targets and their ratios are provided by using the D'Agostini unfolding method. The results of the integrated (nu) over bar (mu), cross-section measurements over this phase space are sigma(H2O) = (1.082 +/- 0.068(stat.)(+0.145)(-0.128)(syst.)) x 10(-39) cm(2)/nucleon, sigma(CH) = (1.096 +/- 0.054 (stat.)(+0.132)(-0.117)(syst.)) x 10(-39) cm(2) /nucleon, and sigma(H2O)/sigma(CH) = 0.987 +/- 0.078 (stat.)(+0.093)(-0.090)(syst.). The (nu) over bar (mu), + nu(mu), cross-section is sigma(H2O) = (1.155 +/- 0.064(stat.)(+0.148)(-0.129)(syst.)) x 10(-39) cm(2)/nucleon, sigma(CH) = (1.159 +/- 0.049(stat.)(+0.129)(-0.115)(syst.)) x 10(-39) cm(2)/nucleon, and sigma(H2O)/sigma(CH) = 0.996 +/- 0.069(stat.)(+0.083)(-0.078)(syst.)

    Results from DMTPC 10-liter detector

    No full text
    The known direction of motion of dark matter particles relative to the Earth may be a key for their unambiguous identification even in the presence of backgrounds. A direction-sensitive detector prototype using a low-density CF₄ gas with a 10 liter fiducial volume is operated for several weeks in a basement laboratory. We present initial results that confirm good detector performance and set preliminary limits on spin-dependent dark matter interactions.United States. Department of Energy (6916448

    Commissioning of a High Pressure Time Projection Chamber with Optical Readout

    No full text
    The measurements of proton–nucleus scattering and high resolution neutrino–nucleus interaction imaging are key in reducing neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has been constructed and operated at the Royal Holloway University of London and CERN as a first step in the development of a HPTPC that is capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment, such as the Deep Underground Neutrino Experiment. In this paper, we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout using four CCD cameras of signals from 241Am sources.</jats:p
    corecore