32 research outputs found
CRISPR/Cas9-Facilitated Chromosome Engineering to Model Human Chromosomal Alterations
Rodents, particularly the mouse, have been used extensively for genetic modeling and analysis of human chromosomal alterations based on the syntenic conservations between the human and rodent genomes. In this article, we will discuss the emergence of CRISPR/Cas9-facilitated chromosome engineering techniques, which may open up a new avenue to study human diseases associated with chromosomal abnormalities, such as Down syndrome and cancer
Conotoxin Diversity in Chelyconus ermineus (Born, 1778) and the Convergent Origin of Piscivory in the Atlantic and Indo-Pacific Cones
The transcriptome of the venom duct of the Atlantic piscivorous cone species Chelyconus ermineus (Born, 1778) was
determined. The venom repertoire of this species includes at least 378 conotoxin precursors, which could be ascribed to
33 known and 22 new (unassigned) protein superfamilies, respectively.Most abundant superfamilies were T,W, O1, M, O2,
and Z, accounting for 57% of all detected diversity. A total of three individuals were sequenced showing considerable
intraspecific variation: each individual had many exclusive conotoxin precursors, and only 20% of all inferred mature
peptides were common to all individuals. Three different regions (distal, medium, and proximal with respect to the venom
bulb) of the venom duct were analyzed independently. Diversity (in terms of number of distinct members) of conotoxin
precursor superfamilies increased toward the distal region whereas transcripts detected toward the proximal region showed
higher expression levels. Only the superfamilies A and I3 showed statistically significant differential expression across regions
of the venom duct. Sequences belonging to the alpha (motor cabal) and kappa (lightning-strike cabal) subfamilies of the
superfamily A were mainly detected in the proximal region of the venom duct. The mature peptides of the alpha subfamily
had the a4/4 cysteine spacing pattern, which has been shown to selectively target muscle nicotinic-acetylcholine receptors,
ultimately producing paralysis. This function is performed by mature peptides having a a3/5 cysteine spacing pattern in
piscivorous cone species from the Indo-Pacific region, thereby supporting a convergent evolution of piscivory in cones
Interindividual variability in stress susceptibility: A role for epigenetic mechanisms in PTSD
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by intrusive and persistent memories of a psychologically traumatic event that leads to significant functional and social impairment in affected individuals. The molecular bases underlying persistent outcomes of a transient traumatic event have remained elusive for many years, but recent studies in rodents have implicated epigenetic modifications of chromatin structure and DNA methylation as fundamental mechanisms for the induction and stabilization of fear memory. In addition to mediating adaptations to traumatic events that ultimately cause PTSD, epigenetic mechanisms are also involved in establishing individual differences in PTSD risk and resilience by mediating long-lasting effects of genes and early environment on adult function and behavior. In this review, we discuss the current evidence for epigenetic regulation of PTSD in human studies and in animal models and comment on ways in which these models can be expanded. In addition, we identify key outstanding questions in the study of epigenetic mechanisms of PTSD in the context of rapidly evolving technologies that are constantly updating and adjusting our understanding of epigenetic modifications and their functional roles. Finally, we discuss the potential application of epigenetic approaches in identifying markers of risk and resilience that can be utilized to promote early intervention and develop therapeutic strategies to combat PTSD after symptom onset
Reduced Function of the Glutathione S-Transferase S1 Suppresses Behavioral Hyperexcitability in Drosophila Expressing Mutant Voltage-Gated Sodium Channels
Voltage-gated sodium (Nav) channels play a central role in the generation and propagation of action potentials in excitable cells such as neurons and muscles. To determine how the phenotypes of Nav-channel mutants are affected by other genes, we performed a forward genetic screen for dominant modifiers of the seizure-prone, gain-of-function Drosophila melanogaster Nav-channel mutant, paraShu. Our analyses using chromosome deficiencies, gene-specific RNA interference, and single-gene mutants revealed that a null allele of glutathione S-transferase S1 (GstS1) dominantly suppresses paraShu phenotypes. Reduced GstS1 function also suppressed phenotypes of other seizure-prone Nav-channel mutants, paraGEFS+ and parabss. Notably, paraShu mutants expressed 50% less GstS1 than wild-type flies, further supporting the notion that paraShu and GstS1 interact functionally. Introduction of a loss-of-function GstS1 mutation into a paraShu background led to up- and down-regulation of various genes, with those encoding cytochrome P450 (CYP) enzymes most significantly over-represented in this group. Because GstS1 is a fly ortholog of mammalian hematopoietic prostaglandin D synthase, and in mammals CYPs are involved in the oxygenation of polyunsaturated fatty acids including prostaglandins, our results raise the intriguing possibility that bioactive lipids play a role in GstS1-mediated suppression of paraShu phenotypes
Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory
A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the central nervous system. In this study, we used Tet1 gene knockout (Tet1KO) mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning) and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage