388 research outputs found

### Vacuum polarization in two-dimensional static spacetimes and dimensional reduction

We obtain an analytic approximation for the effective action of a quantum
scalar field in a general static two-dimensional spacetime. We apply this to
the dilaton gravity model resulting from the spherical reduction of a massive,
non-minimally coupled scalar field in the four-dimensional Schwarzschild
geometry. Careful analysis near the event horizon shows the resulting
two-dimensional system to be regular in the Hartle-Hawking state for general
values of the field mass, coupling, and angular momentum, while at spatial
infinity it reduces to a thermal gas at the black-hole temperature.Comment: REVTeX 4, 23 pages. Accepted by PRD. Minor modifications from
original versio

### Conformal Scalar Propagation on the Schwarzschild Black-Hole Geometry

The vacuum activity generated by the curvature of the Schwarzschild
black-hole geometry close to the event horizon is studied for the case of a
massless, conformal scalar field. The associated approximation to the unknown,
exact propagator in the Hartle-Hawking vacuum state for small values of the
radial coordinate above $r = 2M$ results in an analytic expression which
manifestly features its dependence on the background space-time geometry. This
approximation to the Hartle-Hawking scalar propagator on the Schwarzschild
black-hole geometry is, for that matter, distinct from all other. It is shown
that the stated approximation is valid for physical distances which range from
the event horizon to values which are orders of magnitude above the scale
within which quantum and backreaction effects are comparatively pronounced. An
expression is obtained for the renormalised in the
Hartle-Hawking vacuum state which reproduces the established results on the
event horizon and in that segment of the exterior geometry within which the
approximation is valid. In contrast to previous results the stated expression
has the superior feature of being entirely analytic. The effect of the
manifold's causal structure to scalar propagation is also studied.Comment: 34 pages, 2 figures. Published on line on October 16, 2009 and due to
appear in print in Gen.Rel.Gra

### Analytical approximation of the stress-energy tensor of a quantized scalar field in static spherically symmetric spacetimes

Analytical approximations for ${}$ and ${}$ of a
quantized scalar field in static spherically symmetric spacetimes are obtained.
The field is assumed to be both massive and massless, with an arbitrary
coupling $\xi$ to the scalar curvature, and in a zero temperature vacuum state.
The expressions for ${}$ and ${}$ are divided into
low- and high-frequency parts. The contributions of the high-frequency modes to
these quantities are calculated for an arbitrary quantum state. As an example,
the low-frequency contributions to ${}$ and ${}$ are
calculated in asymptotically flat spacetimes in a quantum state corresponding
to the Minkowski vacuum (Boulware quantum state). The limits of the
applicability of these approximations are discussed.Comment: revtex4, 17 pages; v2: three references adde

### Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work

This paper delineates the first steps in a systematic quantitative study of
the spacetime fluctuations induced by quantum fields in an evaporating black
hole. We explain how the stochastic gravity formalism can be a useful tool for
that purpose within a low-energy effective field theory approach to quantum
gravity. As an explicit example we apply it to the study of the
spherically-symmetric sector of metric perturbations around an evaporating
black hole background geometry. For macroscopic black holes we find that those
fluctuations grow and eventually become important when considering sufficiently
long periods of time (of the order of the evaporation time), but well before
the Planckian regime is reached. In addition, the assumption of a simple
correlation between the fluctuations of the energy flux crossing the horizon
and far from it, which was made in earlier work on spherically-symmetric
induced fluctuations, is carefully analyzed and found to be invalid. Our
analysis suggests the existence of an infinite amplitude for the fluctuations
of the horizon as a three-dimensional hypersurface. We emphasize the need for
understanding and designing operational ways of probing quantum metric
fluctuations near the horizon and extracting physically meaningful information.Comment: 10 pages, REVTeX; minor changes, a few references added and a brief
discussion of their relevance included. To appear in the proceedings of the
10th Peyresq meeting. Dedicated to Rafael Sorkin on the occasion of his 60th
birthda

### Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes

We study the renormalized stress-energy tensor (RSET) for static quantum
states on (n+1)-dimensional, static, spherically symmetric black holes. By
solving the conservation equations, we are able to write the stress-energy
tensor in terms of a single unknown function of the radial co-ordinate, plus
two arbitrary constants. Conditions for the stress-energy tensor to be regular
at event horizons (including the extremal and ``ultra-extremal'' cases) are
then derived using generalized Kruskal-like co-ordinates. These results should
be useful for future calculations of the RSET for static quantum states on
spherically symmetric black hole geometries in any number of space-time
dimensions.Comment: 9 pages, no figures, RevTeX4, references added, accepted for
publication in General Relativity and Gravitatio

### Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

A method for computing the stress-energy tensor for the quantized, massless,
spin 1/2 field in a general static spherically symmetric spacetime is
presented. The field can be in a zero temperature state or a non-zero
temperature thermal state. An expression for the full renormalized
stress-energy tensor is derived. It consists of a sum of two tensors both of
which are conserved. One tensor is written in terms of the modes of the
quantized field and has zero trace. In most cases it must be computed
numerically. The other tensor does not explicitly depend on the modes and has a
trace equal to the trace anomaly. It can be used as an analytic approximation
for the stress-energy tensor and is equivalent to other approximations that
have been made for the stress-energy tensor of the massless spin 1/2 field in
static spherically symmetric spacetimes.Comment: 34 pages, no figure

### Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012

We report on the kinematics of two interacting CMEs observed on 13 and 14
June 2012. Both CMEs originated from the same active region NOAA 11504. After
their launches which were separated by several hours, they were observed to
interact at a distance of 100 Rs from the Sun. The interaction led to a
moderate geomagnetic storm at the Earth with Dst index of approximately, -86
nT. The kinematics of the two CMEs is estimated using data from the Sun Earth
Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar
Terrestrial Relations Observatory (STEREO). Assuming a head-on collision
scenario, we find that the collision is inelastic in nature. Further, the
signatures of their interaction are examined using the in situ observations
obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is
also found that this interaction event led to the strongest sudden storm
commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The
SSC was of long duration, approximately 20 hours. The role of interacting CMEs
in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa

### Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances

1. Movements of many animals along a life-path can be separated into repetitive ones within home ranges and transitions between home ranges. We sought relationships of social and environmental factors with initiation and distance of transition movements in 114 buzzards Buteo buteo that were marked as nestlings with long-life radio tags.
2. Ex-natal dispersal movements of 51 buzzards in autumn were longer than for 30 later in their first year and than 35 extra-natal movements between home ranges after leaving nest areas. In the second and third springs, distances moved from winter focal points by birds that paired were the same or less than for unpaired birds. No post-nuptial movement exceeded 2 km.
3. Initiation of early ex-natal dispersal was enhanced by presence of many sibs, but also by lack of worm-rich loam soils. Distances travelled were greatest for birds from small broods and with relatively little short grass-feeding habitat near the nest. Later movements were generally enhanced by the absence of loam soils and short grassland, especially with abundance of other buzzards and probable poor feeding habitats (heathland, long grass).
4. Buzzards tended to persist in their first autumn where arable land was abundant, but subsequently showed a strong tendency to move from this habitat.
5. Factors that acted most strongly in ½-km buffers round nests, or round subsequent focal points, usually promoted movement compared with factors acting at a larger scale. Strong relationships between movement distances and environmental characteristics in ½-km buffers, especially during early ex-natal dispersal, suggested that buzzards became primed by these factors to travel far.
6. Movements were also farthest for buzzards that had already moved far from their natal nests, perhaps reflecting genetic predisposition, long-term priming or poor habitat beyond the study area

### Signatures of the slow solar wind streams from active regions in the inner corona

Some of local sources of the slow solar wind can be associated with
spectroscopically detected plasma outflows at edges of active regions
accompanied with specific signatures in the inner corona. The EUV telescopes
(e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes
observed extended ray-like structures seen at the limb above active regions in
1MK iron emission lines and described as "coronal rays". To verify the
relationship between coronal rays and plasma outflows, we analyze an isolated
active region (AR) adjacent to small coronal hole (CH) observed by different
EUV instruments in the end of July - beginning of August 2009. On August 1 EIS
revealed in the AR two compact outflows with the Doppler velocities V =10-30
km/s accompanied with fan loops diverging from their regions. At the limb the
ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July
31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic
field lines expanded to the streamer stalks. Using the DEM analysis, it was
found that the fan loops diverged from the outflow regions had the dominant
temperature of ~1 MK, which is similar to that of the outgoing plasma streams.
Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were
conformed with identification of the ARCH as a source region at the
Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the
study support the suggestion that coronal rays can represent signatures of
outflows from ARs propagating in the inner corona along open field lines into
the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure

### Non-neoclassical up/down asymmetry of impurity emission on Alcator C-Mod

We demonstrate that existing theories are insufficient to explain up/down asymmetries of argon x-ray emission in Alcator C-Mod ohmic plasmas. Instead of the poloidal variation, ñ[subscript z]/〈n[subscript z]〉, being of order the inverse aspect ratio, ϵ, and scaling linearly with B[subscript t][superscript _ over n][subscript e]/I[2 over p], it is observed over 0.8 < r/a < 1.0 to be of order unity and exhibits a threshold behaviour between 3.5 <B[subscript t][superscript _ over n][subscript e]/I[subscript p] < 4.0 (T10[superscript 20] m[superscript −3] MA[superscript −1]). The transition from a poloidally symmetric to asymmetric impurity distribution is shown to occur at densities just below those that trigger a reversal of the core toroidal rotation direction, thought to be linked to the transition between the linear and saturated ohmic confinement regimes. A possible drive is discussed by which anomalous radial transport might sustain the impurity density asymmetry as the ratio of the perpendicular to parallel equilibration times, τ[subscript ⊥,z]/τ[subscript ∥,z], approaches unity. This explanation requires a strong up/down asymmetry in radial flux which, while not observable on C-Mod, has been measured in TEXT and Tore Supra ohmic plasmas.United States. Dept. of Energy (Contract DE-FC02-99ER54512)United States. Dept. of Energy (Fusion Research Postdoctoral Research Program

- …