26 research outputs found
Embedded Clusters and the IMF
Despite valiant efforts over nearly five decades, attempts to determine the
IMF over a complete mass range for galactic field stars and in open clusters
have proved difficult. Infrared imaging observations of extremely young
embedded clusters coupled with Monte Carlo modeling of their luminosity
functions are improving this situation and providing important new
contributions to our fundamental knowledge of the IMF and its universality in
both space and time.Comment: 6 pages, 2 figures to appear in "The IMF@50", Kluwer Academic Press,
eds. C. Corbelli, F. Palla, & Hans Zinnecke
Interactions between brown-dwarf binaries and Sun-like stars
Several mechanisms have been proposed for the formation of brown dwarfs, but
there is as yet no consensus as to which -- if any -- are operative in nature.
Any theory of brown dwarf formation must explain the observed statistics of
brown dwarfs. These statistics are limited by selection effects, but they are
becoming increasingly discriminating. In particular, it appears (a) that brown
dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, a\ga
100\,{\rm AU} (the Brown Dwarf Desert), and (b) that these brown dwarfs have a
significantly higher chance of being in a close (a\la 10\,{\rm AU}) binary
system with another brown dwarf than do brown dwarfs in the field. This then
raises the issue of whether these brown dwarfs have formed {\it in situ}, i.e.
by fragmentation of a circumstellar disc; or have formed elsewhere and
subsequently been captured. We present numerical simulations of the purely
gravitational interaction between a close brown-dwarf binary and a Sun-like
star. These simulations demonstrate that such interactions have a negligible
chance () of leading to the close brown-dwarf binary being captured by
the Sun-like star. Making the interactions dissipative by invoking the
hydrodynamic effects of attendant discs might alter this conclusion. However,
in order to explain the above statistics, this dissipation would have to favour
the capture of brown-dwarf binaries over single brown-dwarfs, and we present
arguments why this is unlikely. The simplest inference is that most brown-dwarf
binaries -- and therefore possibly also most single brown dwarfs -- form by
fragmentation of circumstellar discs around Sun-like protostars, with some of
them subsequently being ejected into the field.Comment: 10 pages, 8 figures, Accepted for publication in Astrophysics and
Space Scienc
JWST/NIRSpec observations of brown dwarfs in the Orion Nebula Cluster
We have used the multiobject mode of the Near-Infrared Spectrograph (NIRSpec) on board the James Webb Space Telescope (JWST) to obtain low-resolution 1â5 ÎŒm spectra of 22 brown dwarf candidates in the Orion Nebula Cluster, which were selected with archival images from the Hubble Space Telescope. One of the targets was previously classified as a HerbigâHaro (HH) object and exhibits strong emission in H i, H2, and the fundamental band of CO, further demonstrating that HH objects can have bright emission in that CO band. The remaining targets have late spectral types (M6.5 to early L) and are young based on gravity-sensitive features, as expected for low-mass members of the cluster. According to theoretical evolutionary models, these objects should have masses that range from the hydrogen burning limit to 0.003â0.007 Mâ. Two of the NIRSpec targets were identified as proplyds in earlier analysis of Hubble images. They have spectral types of M6.5 and M7.5, making them two of the coolest and least massive known proplyds. Another brown dwarf shows absorption bands at 3â5 ÎŒm from ices containing H2O, CO2, OCNâ, and CO, indicating that it is either an edge-on class II system or a class I protostar. It is the coolest and least massive object that has detections of these ice features. In addition, it appears to be the first candidate for a protostellar brown dwarf that has spectroscopy confirming its late spectral type
Star and Planet Formation with ALMA: an Overview
Submillimeter observations with ALMA will be the essential next step in our
understanding of how stars and planets form. Key projects range from detailed
imaging of the collapse of pre-stellar cores and measuring the accretion rate
of matter onto deeply embedded protostars, to unravelling the chemistry and
dynamics of high-mass star-forming clusters and high-spatial resolution studies
of protoplanetary disks down to the 1 AU scale.Comment: Invited review, 8 pages, 5 figures; to appear in the proceedings of
"Science with ALMA: a New Era for Astrophysics". Astrophysics & Space
Science, in pres
Cluster Density and the IMF
Observed variations in the IMF are reviewed with an emphasis on environmental
density. The remote field IMF studied in the LMC by several authors is clearly
steeper than most cluster IMFs, which have slopes close to the Salpeter value.
Local field regions of star formation, like Taurus, may have relatively steep
IMFs too. Very dense and massive clusters, like super star clusters, could have
flatter IMFs, or inner-truncated IMFs. We propose that these variations are the
result of three distinct processes during star formation that affect the mass
function in different ways depending on mass range. At solar to intermediate
stellar masses, gas processes involving thermal pressure and supersonic
turbulence determine the basic scale for stellar mass, starting with the
observed pre-stellar condensations, and they define the mass function from
several tenths to several solar masses. Brown dwarfs require extraordinarily
high pressures for fragmentation from the gas, and presumably form inside the
pre-stellar condensations during mutual collisions, secondary fragmentations,
or in disks. High mass stars form in excess of the numbers expected from pure
turbulent fragmentation as pre-stellar condensations coalesce and accrete with
an enhanced gravitational cross section. Variations in the interaction rate,
interaction strength, and accretion rate among the primary fragments formed by
turbulence lead to variations in the relative proportions of brown dwarfs,
solar to intermediate mass stars, and high mass stars.Comment: 14 pages, 3 figures, to be published in ``IMF@50: A Fest-Colloquium
in honor of Edwin E. Salpeter,'' held at Abbazia di Spineto, Siena, Italy,
May 16-20, 2004. Kluwer Academic Publishers; edited by E. Corbelli, F. Palla,
and H. Zinnecke
The IMF in Starbursts
The history of the IMF in starburst regions is reviewed. The IMFs are no
longer believed to be top-heavy, although some superstar clusters, whether in
starburst regions or not, could be. General observations of the IMF are
discussed to put the starburst results in perspective. Observed IMF variations
seem to suggest that the IMF varies a little with environment in the sense that
denser and more massive clusters produce more massive stars, and perhaps more
brown dwarfs too, compared to intermediate mass stars.Comment: 8 pages, to be published in ``Starbursts: from 30 Doradus to Lyman
Break Galaxies,'' held at Institute of Astronomy, Cambridge University, UK,
September 6-10, 2004. Kluwer Academic Publishers, edited by Richard de Grijs
and Rosa M. Gonzalez Delgad
The Theory of Brown Dwarfs and Extrasolar Giant Planets
Straddling the traditional realms of the planets and the stars, objects below
the edge of the main sequence have such unique properties, and are being
discovered in such quantities, that one can rightly claim that a new field at
the interface of planetary science and and astronomy is being born. In this
review, we explore the essential elements of the theory of brown dwarfs and
giant planets, as well as of the new spectroscopic classes L and T. To this
end, we describe their evolution, spectra, atmospheric compositions, chemistry,
physics, and nuclear phases and explain the basic systematics of
substellar-mass objects across three orders of magnitude in both mass and age
and a factor of 30 in effective temperature. Moreover, we discuss the
distinctive features of those extrasolar giant planets that are irradiated by a
central primary, in particular their reflection spectra, albedos, and transits.
Aspects of the latest theory of Jupiter and Saturn are also presented.
Throughout, we highlight the effects of condensates, clouds, molecular
abundances, and molecular/atomic opacities in brown dwarf and giant planet
atmospheres and summarize the resulting spectral diagnostics. Where possible,
the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for
publication in the Reviews of Modern Physics. 30 figures are color. Most of
the figures are in GIF format to reduce the overall size. The full version
with figures can also be found at:
http://jupiter.as.arizona.edu/~burrows/papers/rm
UBVRI Light curves of 44 Type Ia supernovae
We present UBVRI photometry of 44 Type la supernovae (SNe la) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SNe la to date, nearly doubling the number of well-observed, nearby SNe la with published multicolor CCD light curves. The large sample of [U-band photometry is a unique addition, with important connections to SNe la observed at high redshift. The decline rate of SN la U-band light curves correlates well with the decline rate in other bands, as does the U - B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional âŒ40% intrinsic scatter compared to the B band