216 research outputs found
Gravitational Acceleration of Spinning Bodies From Lunar Laser Ranging Measurements
The Sun's relativistic gravitational gradient accelerations of Earth and
Moon, dependent on the motions of the latter bodies, act upon the system's
internal angular momentum. This spin-orbit force (which plays a part in
determining the gravity wave signal templates for astrophysical sources)
slightly accelerates the Earth-Moon system as a whole, but it more robustly
perturbs that system's internal dynamics with a 5 cm, synodically oscillating
range contribution which is presently measured to 4 mm precision by more than
three decades of lunar laser ranging.Comment: 10 pages, PCTex32.v3.
Experimental Design for the LATOR Mission
This paper discusses experimental design for the Laser Astrometric Test Of
Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy
of 1 part in 10^8 in measuring the curvature of the solar gravitational field
as given by the value of the key Eddington post-Newtonian parameter \gamma.
This mission will demonstrate the accuracy needed to measure effects of the
next post-Newtonian order (~G^2) of light deflection resulting from gravity's
intrinsic non-linearity. LATOR will provide the first precise measurement of
the solar quadrupole moment parameter, J2, and will improve determination of a
variety of relativistic effects including Lense-Thirring precession. The
mission will benefit from the recent progress in the optical communication
technologies -- the immediate and natural step above the standard radio-metric
techniques. The key element of LATOR is a geometric redundancy provided by the
laser ranging and long-baseline optical interferometry. We discuss the mission
and optical designs, as well as the expected performance of this proposed
mission. LATOR will lead to very robust advances in the tests of Fundamental
physics: this mission could discover a violation or extension of general
relativity, or reveal the presence of an additional long range interaction in
the physical law. There are no analogs to the LATOR experiment; it is unique
and is a natural culmination of solar system gravity experiments.Comment: 16 pages, 17 figures, invited talk given at ``The 2004 NASA/JPL
Workshop on Physics for Planetary Exploration.'' April 20-22, 2004, Solvang,
C
A theory of manual space navigation
Exact linear equations with applications to manual space navigatio
Orbital Tests of Relativistic Gravity using Artificial Satellites
We reexamine non-Einsteinian effects observable in the orbital motion of
low-orbit artificial Earth satellites. The motivations for doing so are
twofold: (i) recent theoretical studies suggest that the correct theory of
gravity might contain a scalar contribution which has been reduced to a small
value by the effect of the cosmological expansion; (ii) presently developed
space technologies should soon give access to a new generation of satellites
endowed with drag-free systems and tracked in three dimensions at the
centimeter level. Our analysis suggests that such data could measure two
independent combinations of the Eddington parameters (beta - 1) and (gamma - 1)
at the 10^-4 level and probe the time variability of Newton's "constant" at the
d(ln G)/dt ~ 10^-13 yr^-1 level. These tests would provide well-needed
complements to the results of the Lunar Laser Ranging experiment, and of the
presently planned experiments aiming at measuring (gamma -1). In view of the
strong demands they make on the level of non- gravitational perturbations,
these tests might require a dedicated mission consisting of an optimized
passive drag-free satellite.Comment: 17 pages, IHES/P/94/22 and CPT-94/P.E.302
Improving LLR Tests of Gravitational Theory
Accurate analysis of precision ranges to the Moon has provided several tests
of gravitational theory including the Equivalence Principle, geodetic
precession, parameterized post-Newtonian (PPN) parameters and ,
and the constancy of the gravitational constant {\it G}. Since the beginning of
the experiment in 1969, the uncertainties of these tests have decreased
considerably as data accuracies have improved and data time span has
lengthened. We are exploring the modeling improvements necessary to proceed
from cm to mm range accuracies enabled by the new Apache Point Observatory
Lunar Laser-ranging Operation (APOLLO) currently under development in New
Mexico. This facility will be able to make a significant contribution to the
solar system tests of fundamental and gravitational physics. In particular, the
Weak and Strong Equivalence Principle tests would have a sensitivity
approaching 10, yielding sensitivity for the SEP violation parameter
of , general relativistic effects would
be tested to better than 0.1%, and measurements of the relative change in the
gravitational constant, , would be % the inverse age of the
universe. Having this expected accuracy in mind, we discusses the current
techniques, methods and existing physical models used to process the LLR data.
We also identify the challenges for modeling and data analysis that the LLR
community faces today in order to take full advantage of the new APOLLO ranging
station.Comment: 15 pages, 3 figures, talk presented at 2003 NASA/JPL Workshop on
Fundamental Physics in Space, April 14-16, 2003, Oxnard, C
Testing gravity to second post-Newtonian order: a field-theory approach
A new, field-theory-based framework for discussing and interpreting tests of
gravity, notably at the second post-Newtonian (2PN) level, is introduced.
Contrary to previous frameworks which attempted at parametrizing any
conceivable deviation from general relativity, we focus on the best motivated
class of models, in which gravity is mediated by a tensor field together with
one or several scalar fields. The 2PN approximation of these
"tensor-multi-scalar" theories is obtained thanks to a diagrammatic expansion
which allows us to compute the Lagrangian describing the motion of N bodies. In
contrast with previous studies which had to introduce many phenomenological
parameters, we find that the 2PN deviations from general relativity can be
fully described by only two new 2PN parameters, epsilon and zeta, beyond the
usual (Eddington) 1PN parameters beta and gamma. It follows from the basic
tenets of field theory, notably the absence of negative-energy excitations,
that (beta-1), epsilon and zeta (as well as any new parameter entering higher
post-Newtonian orders) must tend to zero with (gamma-1). It is also found that
epsilon and zeta do not enter the 2PN equations of motion of light. Therefore,
light-deflection or time-delay experiments cannot probe any theoretically
motivated 2PN deviation from general relativity, but they can give a clean
access to (gamma-1), which is of greatest significance as it measures the basic
coupling strength of matter to the scalar fields. Because of the importance of
self-gravity effects in neutron stars, binary-pulsar experiments are found to
constitute a unique testing ground for the 2PN structure of gravity. A
simplified analysis of four binary pulsars already leads to significant
constraints: |epsilon| < 7x10^-2, |zeta| < 6x10^-3.Comment: 63 pages, 11 figures.ps.tar.gz.uu, REVTeX 3.
Space-based tests of gravity with laser ranging
Existing capabilities in laser ranging, optical interferometry and metrology,
in combination with precision frequency standards, atom-based quantum sensors,
and drag-free technologies, are critical for the space-based tests of
fundamental physics; as a result, of the recent progress in these disciplines,
the entire area is poised for major advances. Thus, accurate ranging to the
Moon and Mars will provide significant improvements in several gravity tests,
namely the equivalence principle, geodetic precession, PPN parameters
and , and possible variation of the gravitational constant . Other
tests will become possible with development of an optical architecture that
would allow proceeding from meter to centimeter to millimeter range accuracies
on interplanetary distances. Motivated by anticipated accuracy gains, we
discuss the recent renaissance in lunar laser ranging and consider future
relativistic gravity experiments with precision laser ranging over
interplanetary distances.Comment: 14 pages, 2 figures, 1 table. To appear in the proceedings of the
International Workshop "From Quantum to Cosmos: Fundamental Physics Research
in Space", 21-24 May 2006, Warrenton, Virginia, USA
http://physics.jpl.nasa.gov/quantum-to-cosmos
Murphy et al. Reply to the Comment by Kopeikin on "Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit"
Lunar laser ranging analysis, as regularly performed in the solar system
barycentric frame, requires the presence of the gravitomagnetic term in the
equation of motion at the strength predicted by general relativity. The same
term is responsible for the Lense Thirring effect. Any attempt to modify the
strength of the gravitomagnetic interaction would have to do so in a way that
does not destroy the fit to lunar ranging data and other observations.Comment: 1 page; accepted for publication in Physcal Review Letters; refers to
gr-qc/070202
The Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit
Gravitomagnetism--a motional coupling of matter analogous to the Lorentz
force in electromagnetism--has observable consequences for any scenario
involving differing mass currents. Examples include gyroscopes located near a
rotating massive body, and the interaction of two orbiting bodies. In the
former case, the resulting precession of the gyroscope is often called ``frame
dragging,'' and is the principal measurement sought by the Gravity Probe-B
experiment. The latter case is realized in the earth-moon system, and the
effect has in fact been confirmed via lunar laser ranging (LLR) to
approximately 0.1% accuracy--better than the anticipated accuracy of the
Gravity-Probe-B result. This paper shows the connnection between these
seemingly disparate phenomena by employing the same gravitomagnetic term in the
equation of motion to obtain both gyroscopic precession and modification of the
lunar orbit. Since lunar ranging currently provides a part in a thousand fit to
the gravitomagnetic contributions to the lunar orbit, this feature of
post-Newtonian gravity is not adjustable to fit any anomalous result beyond the
0.1% level from Gravity Probe-B without disturbing the existing fit of theory
to the 36 years of LLR data.Comment: 4 pages; accepted for publication in Physical Review Letter
Relativistic Celestial Mechanics with PPN Parameters
Starting from the global parametrized post-Newtonian (PPN) reference system
with two PPN parameters and we consider a space-bounded
subsystem of matter and construct a local reference system for that subsystem
in which the influence of external masses reduces to tidal effects. Both the
metric tensor of the local PPN reference system in the first post-Newtonian
approximation as well as the coordinate transformations between the global PPN
reference system and the local one are constructed in explicit form. The terms
proportional to reflecting a violation of the
equivalence principle are discussed in detail. We suggest an empirical
definition of multipole moments which are intended to play the same role in PPN
celestial mechanics as the Blanchet-Damour moments in General Relativity.
Starting with the metric tensor in the local PPN reference system we derive
translational equations of motion of a test particle in that system. The
translational and rotational equations of motion for center of mass and spin of
each of extended massive bodies possessing arbitrary multipole structure
are derived. As an application of the general equations of motion a
monopole-spin dipole model is considered and the known PPN equations of motion
of mass monopoles with spins are rederived.Comment: 71 page
- …