1,832 research outputs found

    Characterizing the chemical pathways for water formation -- A deep search for hydrogen peroxide

    Full text link
    In 2011, hydrogen peroxide (HOOH) was observed for the first time outside the solar system (Bergman et al., A&A, 2011, 531, L8). This detection appeared a posteriori quite natural, as HOOH is an intermediate product in the formation of water on the surface of dust grains. Following up on this detection, we present a search for HOOH in a diverse sample of sources in different environments, including low-mass protostars and regions with very high column densities, such as Infrared Dark Clouds (IRDCs). We do not detect the molecule in any other source than Oph A, and derive 3σ\sigma upper limits for the abundance of HOOH relative to H2_2 lower than in Oph A for most sources. This result sheds a different light on our understanding of the detection of HOOH in Oph A, and shifts the puzzle to why this source seems to be special. Therefore we rediscuss the detection of HOOH in Oph A, as well as the implications of the low abundance of HOOH, and its similarity with the case of O2_2. Our chemical models show that the production of HOOH is extremely sensitive to the temperature, and favored only in the range 20-30 K. The relatively high abundance of HOOH observed in Oph A suggests that the bulk of the material lies at a temperature in the range 20-30 K.Comment: 18 pages, 3 figures, invited refereed paper at the Faraday Discussion 16

    A multi-transition submillimeter water maser study of evolved stars - detection of a new line near 475 GHz

    Full text link
    Context: Maser emission from the H2O molecule probes the warm, inner circumstellar envelopes of oxygen-rich red giant and supergiant stars. Multi-maser transition studies can be used to put constraints on the density and temperature of the emission regions. Aims: A number of known H2O maser lines were observed toward the long period variables R Leo and W Hya and the red supergiant VY CMa. A search for a new, not yet detected line near 475 GHz was conducted toward these stars. Methods: The Atacama Pathfinder Experiment telescope was used for a multi-transition observational study of submillimeter H2O lines. Results: The 5_33-4_40 transition near 475 GHz was clearly detected toward VY CMa and W Hya. Many other H2O lines were detected toward all three target stars. Relative line intensity ratios and velocity widths were found to vary significantly from star to star. Conclusions: Maser action is observed in all but one line for which it was theoretically predicted. In contrast, one of the strongest maser lines, in R Leo by far the strongest, the 437 GHz 7_53-6_60 transition, is not predicted to be inverted. Some other qualitative predictions of the model calculations are at variance with our observations. Plausible reasons for this are discussed. Based on our findings for W Hya and VY CMa, we find evidence that the H2O masers in the AGB star W Hya arise from the regular circumstellar outflow, while shock excitation in a high velocity flow seems to be required to excite masers far from the red supergiant VY CMa.Comment: 9 pages, 4 figures, Astronomy and Astrophyics (in press

    Aluminium oxide in the optical spectrum of VY Canis Majoris

    Full text link
    We report the first identification of the optical bands of the B-X system of AlO in the red supergiant VY CMa. In addition to TiO, VO, ScO, and YO, which were recognized in the optical spectrum of the star long time ago, AlO is another refractory molecule which displays strong emission bands in this peculiar star. Simulating the bands of AlO, we derive a rotational temperature of the circumstellar gas of Trot=700K. By resolving individual rotational components of the bands, we derive the kinematical characteristics of the gas, finding that the emission is centered at the stellar radial velocity and its intrinsic width is 13.5 km/s (full width at half maximum). It is the narrowest emission among all (thermal) features observed in VY CMa so far. The temperature and line widths suggest that the emission arises in gas located within ~20 stellar radii, where the outflow is still being accelerated. This result contradicts equilibrium-chemistry models which predict substantial AlO abundances only to within a few stellar radii. We argue that non-equilibrium models involving propagation of shocks are needed to explain the observations.Comment: to appear in A&

    APEX telescope observations of new molecular ions

    Full text link
    Hydrides are key ingredients of interstellar chemistry since they are the initial products of chemical networks that lead to the formation of more complex molecules. The fundamental rotational transitions of light hydrides fall into the submillimeter wavelength range. Using the APEX telescope, we observed the long sought hydrides SH+ and OH+ in absorption against the strong continuum source Sagittarius B2(M). Both, absorption from Galactic center gas as well as from diffuse clouds in intervening spiral arms over a large velocity range is observed. The detected absorption of a continuous velocity range on the line of sight shows these hydrides to be an abundant component of diffuse clouds. In addition, we used the strongest submillimeter dust continuum sources in the inner Galaxy to serve as background candles for a systematic census of these hydrides in diffuse clouds and massive star forming regions of our Galaxy and initial results of this survey are presented.Comment: To appear in Spectroscopy of Molecular Ions in the Laboratory and in Space (SMILES 2010), AIP Conference Proceedings, in pres