3,080 research outputs found

    Polymorphism of the glass former ethanol confined in mesoporous silicon

    Full text link
    X-ray diffraction patterns of ethanol confined in parallel-aligned channels of approx. 10 nm diameter and 50 micrometer length in mesoporous silicon have been recorded as a function of filling fraction, temperature and for varying cooling and heating rates. A sorption isotherm, recorded in the liquid state, indicates a three monolayer thick, strongly adsorbed wall layer and a capillary condensed fraction of molecules in the pore center. Though the strongly adsorbed film remains in an amorphous state for the entire temperature range investigated, the capillary condensed molecules reproduce the polymorphism of bulk solid ethanol, that is the formation of either crystalline or glass-like states as a function of cooling rate. The critical rate necessary to achieve a vitrification in the mesopores is, however, at least two orders of magnitude smaller than in the bulk state. This finding can be traced both to pure geometrical constraints and quenched disorder effects, characteristic of confinement in mesoporous silicon.Comment: 6 pages, 4 figure

    Crystallization of medium length 1-alcohols in mesoporous silicon: An X-ray diffraction study

    Full text link
    The linear 1-alcohols n-C16H33OH, n-C17H35OH, n-C19H37OH have been imbibed and solidified in lined up, tubular mesopores of silicon with 10 nm and 15 nm mean diameters, respectively. X-ray diffraction measurements reveal a set of six discrete orientation states (''domains'') characterized by a perpendicular alignment of the molecules with respect to the long axis of the pores and by a four-fold symmetry about this direction, which coincides with the crystalline symmetry of the Si host. A Bragg peak series characteristic of the formation of bilayers indicates a lamellar structure of the spatially confined alcohol crystals in 15 nm pores. By contrast, no layering reflections could be detected for 10 nm pores. The growth mechanism responsible for the peculiar orientation states is attributed to a nano-scale version of the Bridgman technique of single-crystal growth, where the dominant growth direction is aligned parallelly to the long pore axes. Our observations are analogous to the growth phenomenology encountered for medium length n-alkanes confined in mesoporous silicon (Phys. Rev. E 75, 021607 (2007)) and may further elucidate why porous silicon matrices act as an effective nucleation-inducing material for protein solution crystallization.Comment: 4 pages, 4 figures, to appear as a Brief Report in Physical Review

    Phase relaxation of Faraday surface waves

    Full text link
    Surface waves on a liquid air interface excited by a vertical vibration of a fluid layer (Faraday waves) are employed to investigate the phase relaxation of ideally ordered patterns. By means of a combined frequency-amplitude modulation of the excitation signal a periodic expansion and dilatation of a square wave pattern is generated, the dynamics of which is well described by a Debye relaxator. By comparison with the results of a linear theory it is shown that this practice allows a precise measurement of the phase diffusion constant.Comment: 5 figure

    Evidence for Kosterlitz-Thouless type orientational ordering of CF3_3Br monolayers physisorbed on graphite

    Full text link
    Monolayers of the halomethane CF3_3Br adsorbed on graphite have been investigated by x-ray diffraction. The layers crystallize in a commensurate triangular lattice. On cooling they approach a three-sublattice antiferroelectric pattern of the in-plane components of the dipole moments. The ordering is not consistent with a conventional phase transition, but points to Kosterlitz-Thouless behavior. It is argued that the transition is described by a 6-state clock model on a triangular lattice with antiferromagnetic nearest neighbor interactions which is studied with Monte-Carlo simulations. A finite-size scaling analysis shows that the ordering transition is indeed in the KT universality class.Comment: 4 pages, 5 figure

    Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia

    Get PDF
    Ombrotrophic bogs in southern Patagonia have been examined with regard to paleoclimatic and geochemical research questions but knowledge about organic matter decomposition in these bogs is limited. Therefore, we examined peat humification with depth by Fourier Transformed Infrared (FTIR) measurements of solid peat, C/N ratio, and δ<sup>13</sup>C and δ<sup>15</sup>N isotope measurements in three bog sites. Peat decomposition generally increased with depth but distinct small scale variation occurred, reflecting fluctuations in factors controlling decomposition. C/N ratios varied mostly between 40 and 120 and were significantly correlated (<i>R</i><sup>2</sup> > 0.55, <i>p</i> < 0.01) with FTIR-derived humification indices. The degree of decomposition was lowest at a site presently dominated by <i>Sphagnum</i> mosses. The peat was most strongly decomposed at the driest site, where currently peat-forming vegetation produced less refractory organic material, possibly due to fertilizing effects of high sea spray deposition. Decomposition of peat was also advanced near ash layers, suggesting a stimulation of decomposition by ash deposition. Values of δ<sup>13</sup>C were 26.5 ± 2‰ in the peat and partly related to decomposition indices, while δ<sup>15</sup>N in the peat varied around zero and did not consistently relate to any decomposition index. Concentrations of DOM partly related to C/N ratios, partly to FTIR derived indices. They were not conclusively linked to the decomposition degree of the peat. DOM was enriched in <sup>13</sup>C and in <sup>15</sup>N relative to the solid phase probably due to multiple microbial modifications and recycling of N in these N-poor environments. In summary, the depth profiles of C/N ratios, δ<sup>13</sup>C values, and FTIR spectra seemed to reflect changes in environmental conditions affecting decomposition, such as bog wetness, but were dominated by site specific factors, and are further influenced by ash deposition and possibly by sea spray input

    Strong Families in Crises

    Get PDF
    Family Relations and Child Developmen