285 research outputs found
High fidelity teleportation between light and atoms
We show how high fidelity quantum teleportation of light to atoms can be
achieved in the same setup as was used in the recent experiment [J. Sherson
et.al., quant-ph/0605095, accepted by Nature], where such an inter-species
quantum state transfer was demonstrated for the first time. Our improved
protocol takes advantage of the rich multimode entangled structure of the state
of atoms and scattered light and requires simple post-processing of homodyne
detection signals and squeezed light in order to achieve fidelities up to 90%
(85%) for teleportation of coherent (qubit) states under realistic experimental
conditions. The remaining limitation is due to atomic decoherence and light
losses.Comment: 5 pages, 3 figure
Phase-noise induced limitations on cooling and coherent evolution in opto-mechanical systems
We present a detailed theoretical discussion of the effects of ubiquitous
laser noise on cooling and the coherent dynamics in opto-mechanical systems.
Phase fluctuations of the driving laser induce modulations of the linearized
opto-mechanical coupling as well as a fluctuating force on the mirror due to
variations of the mean cavity intensity. We first evaluate the influence of
both effects on cavity cooling and find that for a small laser linewidth the
dominant heating mechanism arises from intensity fluctuations. The resulting
limit on the final occupation number scales linearly with the cavity intensity
both under weak and strong coupling conditions. For the strong coupling regime,
we also determine the effect of phase noise on the coherent transfer of single
excitations between the cavity and the mechanical resonator and obtain a
similar conclusion. Our results show that conditions for optical ground state
cooling and coherent operations are experimentally feasible and thus laser
phase noise does pose a challenge but not a stringent limitation for
opto-mechanical systems
Cavity-assisted squeezing of a mechanical oscillator
We investigate the creation of squeezed states of a vibrating membrane or a
movable mirror in an opto-mechanical system. An optical cavity is driven by
squeezed light and couples via radiation pressure to the membrane/mirror,
effectively providing a squeezed heat-bath for the mechanical oscillator. Under
the conditions of laser cooling to the ground state, we find an efficient
transfer of squeezing with roughly 60% of light squeezing conveyed to the
membrane/mirror (on a dB scale). We determine the requirements on the carrier
frequency and the bandwidth of squeezed light. Beyond the conditions of ground
state cooling, we predict mechanical squashing to be observable in current
systems.Comment: 7.1 pages, 3 figures, submitted to PR
Entanglement of mechanical oscillators coupled to a non-equilibrium environment
Recent experiments aim at cooling nanomechanical resonators to the ground
state by coupling them to non-equilibrium environments in order to observe
quantum effects such as entanglement. This raises the general question of how
such environments affect entanglement. Here we show that there is an optimal
dissipation strength for which the entanglement between two coupled oscillators
is maximized. Our results are established with the help of a general framework
of exact quantum Langevin equations valid for arbitrary bath spectra, in and
out of equilibrium. We point out why the commonly employed Lindblad approach
fails to give even a qualitatively correct picture
Light-Matter Quantum Interface
We propose a quantum interface which applies multiple passes of a pulse of
light through an atomic sample with phase/polarization rotations in between the
passes. Our proposal does not require nonclassical light input or measurements
on the system, and it predicts rapidly growing unconditional entanglement of
light and atoms from just coherent inputs. The proposed interface makes it
possible to achieve a number of tasks within quantum information processing
including teleportation between light and atoms, quantum memory for light and
squeezing of atomic and light variables.Comment: 4 pages, 4 figure
Optimal Ramsey interferometry with echo protocols based on one-axis twisting
We study a variational class of generalized Ramsey protocols that include two one-axis twisting (OAT) operations, one performed before the phase imprint and the other after. In this framework, we optimize the axes of the signal imprint, the OAT interactions, and the direction of the final projective measurement. We distinguish between protocols that exhibit symmetric or antisymmetric dependencies of the spin projection signal on the measured phase. Our results show that the quantum Fisher information, which sets the limits on the sensitivity achievable with a given one-axis twisted input state, can be saturated within our class of variational protocols for almost all initial twisting strengths. By incorporating numerous protocols previously documented in the literature, our approach creates a unified framework for Ramsey echo protocols with OAT states and measurements
Interaction cost of non-local gates
We introduce the interaction cost of a non-local gate as the minimal time of
interaction required to perform the gate when assisting the process with fast
local unitaries. This cost, of interest both in the areas of quantum control
and quantum information, depends on the specific interaction, and allows to
compare in an operationally meaningful manner any two non-local gates. In the
case of a two-qubit system, an analytical expression for the interaction cost
of any unitary operation given any coupling Hamiltonian is obtained. One gate
may be more time-consuming than another for any possible interaction. This
defines a partial order structure in the set of non-local gates, that compares
their degree of non-locality. We analytically characterize this partial order
in a region of the set of two-qubit gates.Comment: revtex, 4 pages, no pictures, typos corrected, small changes in
nomenclatur
- …