3 research outputs found
Sign-symmetry of temperature structure functions
New scalar structure functions with different sign-symmetry properties are
defined. These structure functions possess different scaling exponents even
when their order is the same. Their scaling properties are investigated for
second and third orders, using data from high-Reynolds-number atmospheric
boundary layer. It is only when structure functions with disparate
sign-symmetry properties are compared can the extended self-similarity detect
two different scaling ranges that may exist, as in the example of convective
turbulence.Comment: 18 pages, 5 figures, accepted for publication in Physical Review
Beyond scaling and locality in turbulence
An analytic perturbation theory is suggested in order to find finite-size
corrections to the scaling power laws. In the frame of this theory it is shown
that the first order finite-size correction to the scaling power laws has
following form , where
is a finite-size scale (in particular for turbulence, it can be the Kolmogorov
dissipation scale). Using data of laboratory experiments and numerical
simulations it is shown shown that a degenerate case with can
describe turbulence statistics in the near-dissipation range , where
the ordinary (power-law) scaling does not apply. For moderate Reynolds numbers
the degenerate scaling range covers almost the entire range of scales of
velocity structure functions (the log-corrections apply to finite Reynolds
number). Interplay between local and non-local regimes has been considered as a
possible hydrodynamic mechanism providing the basis for the degenerate scaling
of structure functions and extended self-similarity. These results have been
also expanded on passive scalar mixing in turbulence. Overlapping phenomenon
between local and non-local regimes and a relation between position of maximum
of the generalized energy input rate and the actual crossover scale between
these regimes are briefly discussed.Comment: extended versio